Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRobinson, John Den_UK
dc.contributor.authorBunnefeld, Lynseyen_UK
dc.contributor.authorHearn, Jacken_UK
dc.contributor.authorStone, Graham Nen_UK
dc.contributor.authorHickerson, Michael Jen_UK
dc.date.accessioned2016-11-03T01:26:27Z-
dc.date.available2016-11-03T01:26:27Z-
dc.date.issued2014-09en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23734-
dc.description.abstractRapidly developing sequencing technologies and declining costs have made it possible to collect genome-scale data from population-level samples in nonmodel systems. Inferential tools for historical demography given these data sets are, at present, underdeveloped. In particular, approximate Bayesian computation (ABC) has yet to be widely embraced by researchers generating these data. Here, we demonstrate the promise of ABC for analysis of the large data sets that are now attainable from nonmodel taxa through current genomic sequencing technologies. We develop and test an ABC framework for model selection and parameter estimation, given histories of three-population divergence with admixture. We then explore different sampling regimes to illustrate how sampling more loci, longer loci or more individuals affects the quality of model selection and parameter estimation in this ABC framework. Our results show that inferences improved substantially with increases in the number and/or length of sequenced loci, while less benefit was gained by sampling large numbers of individuals. Optimal sampling strategies given our inferential models included at least 2000 loci, each approximately 2 kb in length, sampled from five diploid individuals per population, although specific strategies are model and question dependent. We tested our ABC approach through simulation-based cross-validations and illustrate its application using previously analysed data from the oak gall wasp, Biorhiza pallida.en_UK
dc.language.isoenen_UK
dc.publisherWiley-Blackwellen_UK
dc.relationRobinson JD, Bunnefeld L, Hearn J, Stone GN & Hickerson MJ (2014) ABC inference of multi-population divergence with admixture from unphased population genomic data. Molecular Ecology, 23 (18), pp. 4458-4471. https://doi.org/10.1111/mec.12881en_UK
dc.rights© 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectapproximate Bayesian computationen_UK
dc.subjectBiorhiza pallidaen_UK
dc.subjectgene flowen_UK
dc.subjectnext-generation sequencingen_UK
dc.subjectphylogeographyen_UK
dc.subjectspeciationen_UK
dc.titleABC inference of multi-population divergence with admixture from unphased population genomic dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1111/mec.12881en_UK
dc.identifier.pmid25113024en_UK
dc.citation.jtitleMolecular Ecologyen_UK
dc.citation.issn1365-294Xen_UK
dc.citation.issn0962-1083en_UK
dc.citation.volume23en_UK
dc.citation.issue18en_UK
dc.citation.spage4458en_UK
dc.citation.epage4471en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaillynsey.bunnefeld@stir.ac.uken_UK
dc.citation.date11/08/2014en_UK
dc.contributor.affiliationCity College of New Yorken_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationCity University of New Yorken_UK
dc.identifier.isiWOS:000342743400005en_UK
dc.identifier.scopusid2-s2.0-84908102237en_UK
dc.identifier.wtid558578en_UK
dc.contributor.orcid0000-0002-9226-7153en_UK
dc.date.accepted2014-08-06en_UK
dcterms.dateAccepted2014-08-06en_UK
dc.date.filedepositdate2016-07-11en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorRobinson, John D|en_UK
local.rioxx.authorBunnefeld, Lynsey|0000-0002-9226-7153en_UK
local.rioxx.authorHearn, Jack|en_UK
local.rioxx.authorStone, Graham N|en_UK
local.rioxx.authorHickerson, Michael J|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-07-11en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-07-11|en_UK
local.rioxx.filenameRobinson_et_al-2014-Molecular_Ecology.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0962-1083en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Robinson_et_al-2014-Molecular_Ecology.pdfFulltext - Published Version547.54 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.