Please use this identifier to cite or link to this item:
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish
Author(s): Delannoy, Christian M J
Zadoks, Ruth N
Crumlish, Margaret
Rodgers, D
Lainson, Frederick A
Ferguson, Hugh
Turnbull, James
Fontaine, Michael C
Contact Email:
Keywords: comparative genomics
sequence type 23
sequence type 260
Streptococcus agalactiae
Issue Date: Jan-2016
Date Deposited: 23-Jun-2016
Citation: Delannoy CMJ, Zadoks RN, Crumlish M, Rodgers D, Lainson FA, Ferguson H, Turnbull J & Fontaine MC (2016) Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish. Journal of Fish Diseases, 39 (1), pp. 13-29.
Abstract: Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10 7 cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment.
DOI Link: 10.1111/jfd.12319
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s):

Files in This Item:
File Description SizeFormat 
Delannoy_et_al-2016-Journal_of_Fish_Diseases.pdfFulltext - Published Version444.12 kBAdobe PDFUnder Embargo until 2999-12-16    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.