Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/23316
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Jiawei | en_UK |
dc.contributor.author | Kendall, Graham | en_UK |
dc.date.accessioned | 2017-04-20T22:52:28Z | - |
dc.date.available | 2017-04-20T22:52:28Z | - |
dc.date.issued | 2017-03 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/23316 | - |
dc.description.abstract | Hyper-heuristics have been successfully applied in solving a variety of computational search problems. In this study, we investigate a hyper-heuristic methodology to generate adaptive strategies for games. Based on a set of low-level heuristics (or strategies), a hyper-heuristic game player can generate strategies which adapt to both the behaviour of the co-players and the game dynamics. By using a simple heuristic selection mechanism, a number of existing heuristics for specialised games can be integrated into an automated game player. As examples, we develop hyper-heuristic game players for three games: iterated prisoner’s dilemma, repeated Goofspiel and the competitive traveling salesmen problem. The results demonstrate that a hyperheuristic game player outperforms the low-level heuristics, when used individually in game playing and it can generate adaptive strategies even if the low-level heuristics are deterministic. This methodology provides an efficient way to develop new strategies for games based on existing strategies. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.relation | Li J & Kendall G (2017) A hyper-heuristic methodology to generate adaptive strategies for games. IEEE Transactions on Computational Intelligence and AI in Games, 9 (1), pp. 1-10. https://doi.org/10.1109/TCIAIG.2015.2394780 | en_UK |
dc.rights | This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Hyper-heuristic | en_UK |
dc.subject | game | en_UK |
dc.subject | iterated prisoner’s dilemma | en_UK |
dc.title | A hyper-heuristic methodology to generate adaptive strategies for games | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1109/TCIAIG.2015.2394780 | en_UK |
dc.citation.jtitle | IEEE Transactions on Computational Intelligence and AI in Games | en_UK |
dc.citation.issn | 1943-068X | en_UK |
dc.citation.volume | 9 | en_UK |
dc.citation.issue | 1 | en_UK |
dc.citation.spage | 1 | en_UK |
dc.citation.epage | 10 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | lij@cs.stir.ac.uk | en_UK |
dc.citation.date | 21/01/2015 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.identifier.isi | WOS:000396391600001 | en_UK |
dc.identifier.scopusid | 2-s2.0-84991018103 | en_UK |
dc.identifier.wtid | 567891 | en_UK |
dc.contributor.orcid | 0000-0003-4685-2615 | en_UK |
dc.date.accepted | 2015-01-14 | en_UK |
dcterms.dateAccepted | 2015-01-14 | en_UK |
dc.date.filedepositdate | 2016-06-11 | en_UK |
dc.relation.funderproject | Towards More Effective Computational Search | en_UK |
dc.relation.funderref | EP/H000698/1 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Li, Jiawei|0000-0003-4685-2615 | en_UK |
local.rioxx.author | Kendall, Graham| | en_UK |
local.rioxx.project | EP/H000698/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2016-06-14 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2016-06-14| | en_UK |
local.rioxx.filename | 07017583.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1943-068X | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
07017583.pdf | Fulltext - Published Version | 1.85 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.