Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23316
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Jiaweien_UK
dc.contributor.authorKendall, Grahamen_UK
dc.date.accessioned2017-04-20T22:52:28Z-
dc.date.available2017-04-20T22:52:28Z-
dc.date.issued2017-03en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23316-
dc.description.abstractHyper-heuristics have been successfully applied in solving a variety of computational search problems. In this study, we investigate a hyper-heuristic methodology to generate adaptive strategies for games. Based on a set of low-level heuristics (or strategies), a hyper-heuristic game player can generate strategies which adapt to both the behaviour of the co-players and the game dynamics. By using a simple heuristic selection mechanism, a number of existing heuristics for specialised games can be integrated into an automated game player. As examples, we develop hyper-heuristic game players for three games: iterated prisoner’s dilemma, repeated Goofspiel and the competitive traveling salesmen problem. The results demonstrate that a hyperheuristic game player outperforms the low-level heuristics, when used individually in game playing and it can generate adaptive strategies even if the low-level heuristics are deterministic. This methodology provides an efficient way to develop new strategies for games based on existing strategies.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationLi J & Kendall G (2017) A hyper-heuristic methodology to generate adaptive strategies for games. IEEE Transactions on Computational Intelligence and AI in Games, 9 (1), pp. 1-10. https://doi.org/10.1109/TCIAIG.2015.2394780en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectHyper-heuristicen_UK
dc.subjectgameen_UK
dc.subjectiterated prisoner’s dilemmaen_UK
dc.titleA hyper-heuristic methodology to generate adaptive strategies for gamesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/TCIAIG.2015.2394780en_UK
dc.citation.jtitleIEEE Transactions on Computational Intelligence and AI in Gamesen_UK
dc.citation.issn1943-068Xen_UK
dc.citation.volume9en_UK
dc.citation.issue1en_UK
dc.citation.spage1en_UK
dc.citation.epage10en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emaillij@cs.stir.ac.uken_UK
dc.citation.date21/01/2015en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.identifier.isiWOS:000396391600001en_UK
dc.identifier.scopusid2-s2.0-84991018103en_UK
dc.identifier.wtid567891en_UK
dc.contributor.orcid0000-0003-4685-2615en_UK
dc.date.accepted2015-01-14en_UK
dcterms.dateAccepted2015-01-14en_UK
dc.date.filedepositdate2016-06-11en_UK
dc.relation.funderprojectTowards More Effective Computational Searchen_UK
dc.relation.funderrefEP/H000698/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLi, Jiawei|0000-0003-4685-2615en_UK
local.rioxx.authorKendall, Graham|en_UK
local.rioxx.projectEP/H000698/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2016-06-14en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-06-14|en_UK
local.rioxx.filename07017583.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1943-068Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
07017583.pdfFulltext - Published Version1.85 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.