Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23156
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBracciali, Andreaen_UK
dc.contributor.authorAldinucci, Marcoen_UK
dc.contributor.authorPatterson, Murrayen_UK
dc.contributor.authorMarschall, Tobiasen_UK
dc.contributor.authorPisanti, Nadiaen_UK
dc.contributor.authorMerelli, Ivanen_UK
dc.contributor.authorTorquati, Massimoen_UK
dc.contributor.editorNonis, Aen_UK
dc.contributor.editorDi Serio, Cen_UK
dc.contributor.editorLio', Pen_UK
dc.contributor.editorTagliaferri, Ren_UK
dc.contributor.editorRizzo, Ren_UK
dc.date.accessioned2017-10-25T23:35:17Z-
dc.date.available2017-10-25T23:35:17Z-
dc.date.issued2016-09-22en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23156-
dc.description.abstractBackground: Haplotype phasing is an important problem in the analysis of genomics information. Given a set of DNA fragments of an individual, it consists of determining which one of the possible alleles (alternative forms of a gene) each fragment comes from. Haplotype information is relevant to gene regulation, epigenetics, genome-wide association studies, evolutionary and population studies, and the study of mutations. Haplotyping is currently addressed as an optimisation problem aiming at solutions that minimise, for instance, error correction costs, where costs are a measure of the con dence in the accuracy of the information acquired from DNA sequencing. Solutions have typically an exponential computational complexity. WhatsHap is a recent optimal approach which moves computational complexity from DNA fragment length to fragment overlap, i.e. coverage, and is hence of particular interest when considering sequencing technology's current trends that are producing longer fragments.  Results: Given the potential relevance of ecient haplotyping in several analysis pipelines, we have designed and engineered pWhatsHap, a parallel, high-performance version of WhatsHap. pWhatsHap is embedded in a toolkit developed in Python and supports genomics datasets in standard le formats. Building on WhatsHap, pWhatsHap exhibits the same complexity exploring a number of possible solutions which is exponential in the coverage of the dataset. The parallel implementation on multi-core architectures allows for a relevant reduction of the execution time for haplotyping, while the provided results enjoy the same high accuracy as that provided by WhatsHap, which increases with coverage.  Conclusions: Due to its structure and management of the large datasets, the parallelisation of WhatsHap posed demanding technical challenges, which have been addressed exploiting a high-level parallel programming framework. The result, pWhatsHap, is a freely available toolkit that improves the eciency of the analysis of genomics information.en_UK
dc.language.isoenen_UK
dc.publisherBioMed Centralen_UK
dc.relationBracciali A, Aldinucci M, Patterson M, Marschall T, Pisanti N, Merelli I & Torquati M (2016) PWHATSHAP: efficient haplotyping for future generation sequencing. Nonis A (Editor), Di Serio C (Editor), Lio' P (Editor), Tagliaferri R (Editor) & Rizzo R (Editor) 11th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014), Cambridge, UK, 26.06.2014-28.06.2014. BMC Bioinformatics, 17 (Supplement 11). http://www.cussb.unisr.it/cibb2014/; https://doi.org/10.1186/s12859-016-1170-yen_UK
dc.rights© The Author(s) 2016 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectHaplotypingen_UK
dc.subjectHigh-performance computingen_UK
dc.subjectFuture generation sequencingen_UK
dc.titlePWHATSHAP: efficient haplotyping for future generation sequencingen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1186/s12859-016-1170-yen_UK
dc.identifier.pmid28185544en_UK
dc.citation.jtitleBMC Bioinformaticsen_UK
dc.citation.issn1471-2105en_UK
dc.citation.volume17en_UK
dc.citation.issueSupplement 11en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://www.cussb.unisr.it/cibb2014/en_UK
dc.author.emailabb@cs.stir.ac.uken_UK
dc.citation.conferencedates2014-06-26 - 2014-06-28en_UK
dc.citation.conferencelocationCambridge, UKen_UK
dc.citation.conferencename11th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014)en_UK
dc.citation.date22/09/2016en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Turinen_UK
dc.contributor.affiliationClaude Bernard University Lyon 1en_UK
dc.contributor.affiliationSaarland Universityen_UK
dc.contributor.affiliationUniversity of Pisaen_UK
dc.contributor.affiliationItalian National Research Council (CNR)en_UK
dc.contributor.affiliationUniversity of Pisaen_UK
dc.identifier.isiWOS:000392421500004en_UK
dc.identifier.scopusid2-s2.0-84994476655en_UK
dc.identifier.wtid572073en_UK
dc.contributor.orcid0000-0003-1451-9260en_UK
dc.date.accepted2016-04-12en_UK
dcterms.dateAccepted2016-04-12en_UK
dc.date.filedepositdate2016-05-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBracciali, Andrea|0000-0003-1451-9260en_UK
local.rioxx.authorAldinucci, Marco|en_UK
local.rioxx.authorPatterson, Murray|en_UK
local.rioxx.authorMarschall, Tobias|en_UK
local.rioxx.authorPisanti, Nadia|en_UK
local.rioxx.authorMerelli, Ivan|en_UK
local.rioxx.authorTorquati, Massimo|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorNonis, A|en_UK
local.rioxx.contributorDi Serio, C|en_UK
local.rioxx.contributorLio', P|en_UK
local.rioxx.contributorTagliaferri, R|en_UK
local.rioxx.contributorRizzo, R|en_UK
local.rioxx.freetoreaddate2016-09-22en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-09-22en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-09-22|en_UK
local.rioxx.filenameBracciali-etal-BMCBioinformatics-2016.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Bracciali-etal-BMCBioinformatics-2016.pdfFulltext - Published Version1.17 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.