Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.editorFriedrich, Ten_UK
dc.date.accessioned2017-08-21T22:33:10Z-
dc.date.available2017-08-21T22:33:10Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23148-
dc.description.abstractSurrogate fitness functions are a popular technique for speeding up metaheuristics, replacing calls to a costly fitness function with calls to a cheap model. However, surrogates also represent an explicit model of the fitness function, which can be exploited beyond approximating the fitness of solutions. This paper proposes that mining surrogate fitness models can yield useful additional information on the problem to the decision maker, adding value to the optimisation process. An existing fitness model based on Markov networks is presented and applied to the optimisation of glazing on a building facade. Analysis of the model reveals how its parameters point towards the global optima of the problem after only part of the optimisation run, and reveals useful properties like the relative sensitivities of the problem variables.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationBrownlee A (2016) Mining Markov Network Surrogates for Value-Added Optimisation. In: Friedrich T (ed.) GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. Genetic and Evolutionary Computation Conference GECCO’16, Denver, CO, USA, 20.07.2016-24.07.2016. New York: ACM, pp. 1267-1274. https://doi.org/10.1145/2908961.2931711en_UK
dc.relation.urihttp://hdl.handle.net/11667/74en_UK
dc.relation.urihttp://gecco-2016.sigevo.org/index.html/HomePage#&panel1-1en_UK
dc.rightsPublished in Companion Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2016. The definitive version of record can be found in GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Pages 1267-1274 ISBN 978-1-4503-2138-9. DOI: 10.1145/2908961.2931711en_UK
dc.subjectmetaheuristicsen_UK
dc.subjectsurrogatesen_UK
dc.subjectfitness approximationen_UK
dc.subjectdecision makingen_UK
dc.titleMining Markov Network Surrogates for Value-Added Optimisationen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1145/2908961.2931711en_UK
dc.citation.spage1267en_UK
dc.citation.epage1274en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailsbr@cs.stir.ac.uken_UK
dc.citation.btitleGECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companionen_UK
dc.citation.conferencedates2016-07-20 - 2016-07-24en_UK
dc.citation.conferencelocationDenver, CO, USAen_UK
dc.citation.conferencenameGenetic and Evolutionary Computation Conference GECCO’16en_UK
dc.citation.date31/07/2016en_UK
dc.citation.isbn978-1-4503-4323-7en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000383741800173en_UK
dc.identifier.scopusid2-s2.0-84986269134en_UK
dc.identifier.wtid571823en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2016-04-23en_UK
dcterms.dateAccepted2016-04-23en_UK
dc.date.filedepositdate2016-05-04en_UK
dc.relation.funderprojectDAASE: Dynamic Adaptive Automated Software Engineeringen_UK
dc.relation.funderprojectFAIME: A Feature based Framework to Automatically Integrate and Improve Metaheuristics via Examples.en_UK
dc.relation.funderrefEP/J017515/1en_UK
dc.relation.funderrefEP/N002849/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.projectEP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.projectEP/N002849/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.contributorFriedrich, T|en_UK
local.rioxx.freetoreaddate2016-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-07-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-07-31|en_UK
local.rioxx.filenameoriginal-submission.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-4323-7en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
original-submission.pdfFulltext - Accepted Version687.88 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.