Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/23148
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brownlee, Alexander | en_UK |
dc.contributor.editor | Friedrich, T | en_UK |
dc.date.accessioned | 2017-08-21T22:33:10Z | - |
dc.date.available | 2017-08-21T22:33:10Z | - |
dc.date.issued | 2016 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/23148 | - |
dc.description.abstract | Surrogate fitness functions are a popular technique for speeding up metaheuristics, replacing calls to a costly fitness function with calls to a cheap model. However, surrogates also represent an explicit model of the fitness function, which can be exploited beyond approximating the fitness of solutions. This paper proposes that mining surrogate fitness models can yield useful additional information on the problem to the decision maker, adding value to the optimisation process. An existing fitness model based on Markov networks is presented and applied to the optimisation of glazing on a building facade. Analysis of the model reveals how its parameters point towards the global optima of the problem after only part of the optimisation run, and reveals useful properties like the relative sensitivities of the problem variables. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | ACM | en_UK |
dc.relation | Brownlee A (2016) Mining Markov Network Surrogates for Value-Added Optimisation. In: Friedrich T (ed.) GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. Genetic and Evolutionary Computation Conference GECCO’16, Denver, CO, USA, 20.07.2016-24.07.2016. New York: ACM, pp. 1267-1274. https://doi.org/10.1145/2908961.2931711 | en_UK |
dc.relation.uri | http://hdl.handle.net/11667/74 | en_UK |
dc.relation.uri | http://gecco-2016.sigevo.org/index.html/HomePage#&panel1-1 | en_UK |
dc.rights | Published in Companion Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2016. The definitive version of record can be found in GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Pages 1267-1274 ISBN 978-1-4503-2138-9. DOI: 10.1145/2908961.2931711 | en_UK |
dc.subject | metaheuristics | en_UK |
dc.subject | surrogates | en_UK |
dc.subject | fitness approximation | en_UK |
dc.subject | decision making | en_UK |
dc.title | Mining Markov Network Surrogates for Value-Added Optimisation | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1145/2908961.2931711 | en_UK |
dc.citation.spage | 1267 | en_UK |
dc.citation.epage | 1274 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | sbr@cs.stir.ac.uk | en_UK |
dc.citation.btitle | GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion | en_UK |
dc.citation.conferencedates | 2016-07-20 - 2016-07-24 | en_UK |
dc.citation.conferencelocation | Denver, CO, USA | en_UK |
dc.citation.conferencename | Genetic and Evolutionary Computation Conference GECCO’16 | en_UK |
dc.citation.date | 31/07/2016 | en_UK |
dc.citation.isbn | 978-1-4503-4323-7 | en_UK |
dc.publisher.address | New York | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000383741800173 | en_UK |
dc.identifier.scopusid | 2-s2.0-84986269134 | en_UK |
dc.identifier.wtid | 571823 | en_UK |
dc.contributor.orcid | 0000-0003-2892-5059 | en_UK |
dc.date.accepted | 2016-04-23 | en_UK |
dcterms.dateAccepted | 2016-04-23 | en_UK |
dc.date.filedepositdate | 2016-05-04 | en_UK |
dc.relation.funderproject | DAASE: Dynamic Adaptive Automated Software Engineering | en_UK |
dc.relation.funderproject | FAIME: A Feature based Framework to Automatically Integrate and Improve Metaheuristics via Examples. | en_UK |
dc.relation.funderref | EP/J017515/1 | en_UK |
dc.relation.funderref | EP/N002849/1 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Brownlee, Alexander|0000-0003-2892-5059 | en_UK |
local.rioxx.project | EP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.project | EP/N002849/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.contributor | Friedrich, T| | en_UK |
local.rioxx.freetoreaddate | 2016-07-31 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-07-31 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2016-07-31| | en_UK |
local.rioxx.filename | original-submission.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-1-4503-4323-7 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
original-submission.pdf | Fulltext - Accepted Version | 687.88 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.