Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRowlinson, Peteren_UK
dc.date.accessioned2016-04-05T23:32:35Z-
dc.date.available2016-04-05T23:32:35Z-
dc.date.issued2016-03-15en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23031-
dc.description.abstractLet G be a connected triangle-free graph of order n>5 with μ∉{−1,0} as an eigenvalue of multiplicity k>1. We show that if d is the maximum degree in G then k≤n−d−1; moreover, if k=n−d−1 then either (a) G is non-bipartite and k≤(μ2+3μ+1)(μ2+2μ−1), with equality only if G is strongly regular, or (b) G is bipartite and k≤d−1, with equality only if G is a bipolar cone. In each case we discuss the extremal graphs that arise.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationRowlinson P (2016) Eigenvalue multiplicity in triangle-free graphs. Linear Algebra and Its Applications, 493, pp. 484-493. https://doi.org/10.1016/j.laa.2015.12.012en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectBipartite graphen_UK
dc.subjectEigenvalueen_UK
dc.subjectStar complementen_UK
dc.subjectStrongly regular graphen_UK
dc.subjectTriangle-free graphen_UK
dc.titleEigenvalue multiplicity in triangle-free graphsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-30en_UK
dc.rights.embargoreason[Rowlinson_LAA_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.laa.2015.12.012en_UK
dc.citation.jtitleLinear Algebra and its Applicationsen_UK
dc.citation.issn0024-3795en_UK
dc.citation.volume493en_UK
dc.citation.spage484en_UK
dc.citation.epage493en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailp.rowlinson@stirling.ac.uken_UK
dc.citation.date29/12/2015en_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000370455800031en_UK
dc.identifier.scopusid2-s2.0-84952333032en_UK
dc.identifier.wtid575115en_UK
dc.contributor.orcid0000-0003-4878-3203en_UK
dc.date.accepted2015-12-10en_UK
dcterms.dateAccepted2015-12-10en_UK
dc.date.filedepositdate2016-04-05en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorRowlinson, Peter|0000-0003-4878-3203en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameRowlinson_LAA_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0024-3795en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Rowlinson_LAA_2016.pdfFulltext - Published Version315.85 kBAdobe PDFUnder Embargo until 2999-12-30    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.