Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/23031
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rowlinson, Peter | en_UK |
dc.date.accessioned | 2016-04-05T23:32:35Z | - |
dc.date.available | 2016-04-05T23:32:35Z | - |
dc.date.issued | 2016-03-15 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/23031 | - |
dc.description.abstract | Let G be a connected triangle-free graph of order n>5 with μ∉{−1,0} as an eigenvalue of multiplicity k>1. We show that if d is the maximum degree in G then k≤n−d−1; moreover, if k=n−d−1 then either (a) G is non-bipartite and k≤(μ2+3μ+1)(μ2+2μ−1), with equality only if G is strongly regular, or (b) G is bipartite and k≤d−1, with equality only if G is a bipolar cone. In each case we discuss the extremal graphs that arise. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Rowlinson P (2016) Eigenvalue multiplicity in triangle-free graphs. Linear Algebra and Its Applications, 493, pp. 484-493. https://doi.org/10.1016/j.laa.2015.12.012 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Bipartite graph | en_UK |
dc.subject | Eigenvalue | en_UK |
dc.subject | Star complement | en_UK |
dc.subject | Strongly regular graph | en_UK |
dc.subject | Triangle-free graph | en_UK |
dc.title | Eigenvalue multiplicity in triangle-free graphs | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-30 | en_UK |
dc.rights.embargoreason | [Rowlinson_LAA_2016.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1016/j.laa.2015.12.012 | en_UK |
dc.citation.jtitle | Linear Algebra and its Applications | en_UK |
dc.citation.issn | 0024-3795 | en_UK |
dc.citation.volume | 493 | en_UK |
dc.citation.spage | 484 | en_UK |
dc.citation.epage | 493 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | p.rowlinson@stirling.ac.uk | en_UK |
dc.citation.date | 29/12/2015 | en_UK |
dc.contributor.affiliation | Mathematics | en_UK |
dc.identifier.isi | WOS:000370455800031 | en_UK |
dc.identifier.scopusid | 2-s2.0-84952333032 | en_UK |
dc.identifier.wtid | 575115 | en_UK |
dc.contributor.orcid | 0000-0003-4878-3203 | en_UK |
dc.date.accepted | 2015-12-10 | en_UK |
dcterms.dateAccepted | 2015-12-10 | en_UK |
dc.date.filedepositdate | 2016-04-05 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Rowlinson, Peter|0000-0003-4878-3203 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2999-12-30 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Rowlinson_LAA_2016.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0024-3795 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Rowlinson_LAA_2016.pdf | Fulltext - Published Version | 315.85 kB | Adobe PDF | Under Embargo until 2999-12-30 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.