Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22800
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchröder, Christianen_UK
dc.contributor.authorKöhler, Ingaen_UK
dc.contributor.authorMuller, Francoisen_UK
dc.contributor.authorChumakov, Aleksandren_UK
dc.contributor.authorKupenko, Ilyaen_UK
dc.contributor.authorRüffer, Rudolfen_UK
dc.contributor.authorKappler, Andreasen_UK
dc.date.accessioned2018-03-03T02:31:19Z-
dc.date.available2018-03-03T02:31:19Z-
dc.date.issued2016-12en_UK
dc.identifier.other85en_UK
dc.identifier.urihttp://hdl.handle.net/1893/22800-
dc.description.abstractBiogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observation of a ‘rusty carbon sink’ observed in modern sediments. The stabilisation of Fe-organic matter may also aid transport of particulate Fe in the water column while having on adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and are therefore difficult to study with standard mineralogical tools. Sequential extraction techniques are commonly used as proxies. We provide an example where Mössbauer spectroscopy can replace sequential extraction techniques where mineralogical information is sought. Where mineral separation is needed, for example in the investigation of Fe or S isotope fractionation, Mössbauer spectroscopy can help to optimize sequential extraction procedures. This can be employed in large number of investigations of soils and sediments, potentially even for mineral separation to study Fe and S isotope fractionation in samples returned from Mars, which might reveal signatures of biological activity. When looking for the possibility of life outside Earth, Jupiter’s icy moon Europa is one of the most exciting places. It may be just in reach for a Mössbauer spectrometer deployed by a future lander to study the red streak mineral deposits on its surface to look for clues about the composition of the ocean hidden under the moon’s icy surface.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationSchröder C, Köhler I, Muller F, Chumakov A, Kupenko I, Rüffer R & Kappler A (2016) The biogeochemical iron cycle and astrobiology. Hyperfine Interactions, 237 (1), Art. No.: 85. https://doi.org/10.1007/s10751-016-1289-2en_UK
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectMössbauer spectroscopyen_UK
dc.subjectIron bioavailabilityen_UK
dc.subjectSequential extractionen_UK
dc.subjectSynchrotron Mössbauer Source (SMS)en_UK
dc.titleThe biogeochemical iron cycle and astrobiologyen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s10751-016-1289-2en_UK
dc.citation.jtitleHyperfine Interactionsen_UK
dc.citation.issn1572-9540en_UK
dc.citation.issn0304-3843en_UK
dc.citation.volume237en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderScottish Alliance for Geoscience, Environment and Societyen_UK
dc.author.emailchristian.schroeder@stir.ac.uken_UK
dc.citation.date21/03/2016en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationFriedrich Schiller University of Jenaen_UK
dc.contributor.affiliationQatar Universityen_UK
dc.contributor.affiliationEuropean Synchrotron Radiation Facilityen_UK
dc.contributor.affiliationEuropean Synchrotron Radiation Facilityen_UK
dc.contributor.affiliationEuropean Synchrotron Radiation Facilityen_UK
dc.contributor.affiliationUniversity of Tuebingen (Eberhard Karls)en_UK
dc.identifier.isiWOS:000372732500001en_UK
dc.identifier.scopusid2-s2.0-84961589908en_UK
dc.identifier.wtid585186en_UK
dc.contributor.orcid0000-0002-7935-6039en_UK
dc.date.accepted2015-10-28en_UK
dcterms.dateAccepted2015-10-28en_UK
dc.date.filedepositdate2016-01-28en_UK
dc.relation.funderprojectSAGES Scheme 2 ECR exchanges with Europe, North America, China and Indiaen_UK
dc.relation.funderrefLetter dated 17/09/2013 attacheden_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSchröder, Christian|0000-0002-7935-6039en_UK
local.rioxx.authorKöhler, Inga|en_UK
local.rioxx.authorMuller, Francois|en_UK
local.rioxx.authorChumakov, Aleksandr|en_UK
local.rioxx.authorKupenko, Ilya|en_UK
local.rioxx.authorRüffer, Rudolf|en_UK
local.rioxx.authorKappler, Andreas|en_UK
local.rioxx.projectLetter dated 17/09/2013 attached|Scottish Alliance for Geoscience, Environment and Society|http://dx.doi.org/10.13039/100008083en_UK
local.rioxx.freetoreaddate2016-03-21en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-03-21en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-03-21|en_UK
local.rioxx.filenameSchroeder et al_Hyperfine_2016.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0304-3843en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Schroeder et al_Hyperfine_2016.pdfFulltext - Published Version1.63 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.