Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Mapping the spatial distribution and activity of 226Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data
Author(s): Varley, Adam
Tyler, Andrew
Smith, Leslie
Dale, Paul
Davies, Mike
Contact Email:
Keywords: Radium contaminated land
Gamma-ray spectrometry
Machine Learning
Contamination mapping
Issue Date: Mar-2016
Date Deposited: 20-Jan-2016
Citation: Varley A, Tyler A, Smith L, Dale P & Davies M (2016) Mapping the spatial distribution and activity of 226Ra at legacy sites through Machine Learning interpretation of gamma-ray spectrometry data. Science of the Total Environment, 545-546, pp. 654-661.
Abstract: Radium (226Ra) contamination derived from military, industrial, and pharmaceutical products can be found at a number of historical sites across the world posing a risk to human health. The analysis of spectral data derived using gamma-ray spectrometry can offer a powerful tool to rapidly estimate and map the activity, depth, and lateral distribution of 226Ra contamination covering an extensive area. Subsequently, reliable risk assessments can be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally occurring radionuclide such as 226Ra. As a result, conventional surveys tend to attribute the highest activities to the largest total signal received by a detector (Gross counts): an assumption that tends to neglect higher activities at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations, Principal Component Analysis and Machine Learning based algorithms to derive depth and activity estimates for 226Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide, the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated by mapping depth and activity estimates at a case study site in Scotland. There the method identified significantly higher activity (<3Bqg−1) occurring at depth (>0.4m), that conventional gross counting algorithms failed to identify. It was concluded that the method could easily be employed to identify areas of high activity potentially occurring at depth, prior to intrusive investigation using conventional sampling techniques.
DOI Link: 10.1016/j.scitotenv.2015.10.112
Rights: Copyright 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (
Licence URL(s):

Files in This Item:
File Description SizeFormat 
Varley et al_Sci of Tot Env_2016.pdfFulltext - Published Version2.01 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.