Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorSmith, Leslieen_UK
dc.contributor.editorNguyen, NTen_UK
dc.contributor.editorKowalczyk, Ren_UK
dc.contributor.editorFred, Aen_UK
dc.contributor.editorJoaquim, Fen_UK
dc.date.accessioned2018-01-09T10:08:29Z-
dc.date.available2018-01-09T10:08:29Z-
dc.date.issued2014en_UK
dc.identifier.urihttp://hdl.handle.net/1893/22466-
dc.description.abstractA Hopfield Neural Network (HNN) with a new weight update rule can be treated as a second order Estimation of Distribution Algorithm (EDA) or Fitness Function Model (FFM) for solving optimisation problems. The HNN models promising solutions and has a capacity for storing a certain number of local optima as low energy attractors. Solutions are generated by sampling the patterns stored in the attractors. The number of attractors a network can store (its capacity) has an impact on solution diversity and, consequently solution quality. This paper introduces two new HNN learning rules and presents the Hopfield EDA (HEDA), which learns weight values from samples of the fitness function. It investigates the attractor storage capacity of the HEDA and shows it to be equal to that known in the literature for a standard HNN. The relationship between HEDA capacity and linkage order is also investigated.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationSwingler K & Smith L (2014) An analysis of the local optima storage capacity of Hopfield network based fitness function models. In: Nguyen N, Kowalczyk R, Fred A & Joaquim F (eds.) Transactions on Computational Collective Intelligence XVII. Lecture Notes in Computer Science, 8790. Berlin Heidelberg: Springer, pp. 248-271. http://link.springer.com/chapter/10.1007/978-3-662-44994-3_13; https://doi.org/10.1007/978-3-662-44994-3_13en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 8790en_UK
dc.rightsPublished in Nguyen NT, Kowalczyk R, Fred A, Joaquim F (ed.) Transactions on Computational Collective Intelligence XVII by Springer. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-44994-3_13en_UK
dc.subjectDynamical systemsen_UK
dc.subjectHopfield neural networksen_UK
dc.subjectOptimization Energy attractorsen_UK
dc.subjectFitness function modelingen_UK
dc.subjectFitness functionsen_UK
dc.subjectHopfield Networksen_UK
dc.subjectHopfield neural networks (HNN)en_UK
dc.subjectOptimisation problemsen_UK
dc.subjectSolution qualityen_UK
dc.subjectStorage capacityen_UK
dc.titleAn analysis of the local optima storage capacity of Hopfield network based fitness function modelsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-662-44994-3_13en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage248en_UK
dc.citation.epage271en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://link.springer.com/chapter/10.1007/978-3-662-44994-3_13en_UK
dc.author.emailkms@cs.stir.ac.uken_UK
dc.citation.btitleTransactions on Computational Collective Intelligence XVIIen_UK
dc.citation.date30/09/2014en_UK
dc.citation.isbn978-3-662-44993-6en_UK
dc.publisher.addressBerlin Heidelbergen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000370621400013en_UK
dc.identifier.scopusid2-s2.0-84912105892en_UK
dc.identifier.wtid587888en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0002-3716-8013en_UK
dcterms.dateAccepted2014-09-30en_UK
dc.date.filedepositdate2015-11-11en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorSmith, Leslie|0000-0002-3716-8013en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorNguyen, NT|en_UK
local.rioxx.contributorKowalczyk, R|en_UK
local.rioxx.contributorFred, A|en_UK
local.rioxx.contributorJoaquim, F|en_UK
local.rioxx.freetoreaddate2015-11-11en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2015-11-11|en_UK
local.rioxx.filenameSwingler_HEDA_Revision.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-662-44993-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Swingler_HEDA_Revision.pdfFulltext - Accepted Version188.7 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.