Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/22466
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Swingler, Kevin | en_UK |
dc.contributor.author | Smith, Leslie | en_UK |
dc.contributor.editor | Nguyen, NT | en_UK |
dc.contributor.editor | Kowalczyk, R | en_UK |
dc.contributor.editor | Fred, A | en_UK |
dc.contributor.editor | Joaquim, F | en_UK |
dc.date.accessioned | 2018-01-09T10:08:29Z | - |
dc.date.available | 2018-01-09T10:08:29Z | - |
dc.date.issued | 2014 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/22466 | - |
dc.description.abstract | A Hopfield Neural Network (HNN) with a new weight update rule can be treated as a second order Estimation of Distribution Algorithm (EDA) or Fitness Function Model (FFM) for solving optimisation problems. The HNN models promising solutions and has a capacity for storing a certain number of local optima as low energy attractors. Solutions are generated by sampling the patterns stored in the attractors. The number of attractors a network can store (its capacity) has an impact on solution diversity and, consequently solution quality. This paper introduces two new HNN learning rules and presents the Hopfield EDA (HEDA), which learns weight values from samples of the fitness function. It investigates the attractor storage capacity of the HEDA and shows it to be equal to that known in the literature for a standard HNN. The relationship between HEDA capacity and linkage order is also investigated. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Swingler K & Smith L (2014) An analysis of the local optima storage capacity of Hopfield network based fitness function models. In: Nguyen N, Kowalczyk R, Fred A & Joaquim F (eds.) Transactions on Computational Collective Intelligence XVII. Lecture Notes in Computer Science, 8790. Berlin Heidelberg: Springer, pp. 248-271. http://link.springer.com/chapter/10.1007/978-3-662-44994-3_13; https://doi.org/10.1007/978-3-662-44994-3_13 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 8790 | en_UK |
dc.rights | Published in Nguyen NT, Kowalczyk R, Fred A, Joaquim F (ed.) Transactions on Computational Collective Intelligence XVII by Springer. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-44994-3_13 | en_UK |
dc.subject | Dynamical systems | en_UK |
dc.subject | Hopfield neural networks | en_UK |
dc.subject | Optimization Energy attractors | en_UK |
dc.subject | Fitness function modeling | en_UK |
dc.subject | Fitness functions | en_UK |
dc.subject | Hopfield Networks | en_UK |
dc.subject | Hopfield neural networks (HNN) | en_UK |
dc.subject | Optimisation problems | en_UK |
dc.subject | Solution quality | en_UK |
dc.subject | Storage capacity | en_UK |
dc.title | An analysis of the local optima storage capacity of Hopfield network based fitness function models | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1007/978-3-662-44994-3_13 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 248 | en_UK |
dc.citation.epage | 271 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.identifier.url | http://link.springer.com/chapter/10.1007/978-3-662-44994-3_13 | en_UK |
dc.author.email | kms@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Transactions on Computational Collective Intelligence XVII | en_UK |
dc.citation.date | 30/09/2014 | en_UK |
dc.citation.isbn | 978-3-662-44993-6 | en_UK |
dc.publisher.address | Berlin Heidelberg | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000370621400013 | en_UK |
dc.identifier.scopusid | 2-s2.0-84912105892 | en_UK |
dc.identifier.wtid | 587888 | en_UK |
dc.contributor.orcid | 0000-0002-4517-9433 | en_UK |
dc.contributor.orcid | 0000-0002-3716-8013 | en_UK |
dcterms.dateAccepted | 2014-09-30 | en_UK |
dc.date.filedepositdate | 2015-11-11 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Swingler, Kevin|0000-0002-4517-9433 | en_UK |
local.rioxx.author | Smith, Leslie|0000-0002-3716-8013 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Nguyen, NT| | en_UK |
local.rioxx.contributor | Kowalczyk, R| | en_UK |
local.rioxx.contributor | Fred, A| | en_UK |
local.rioxx.contributor | Joaquim, F| | en_UK |
local.rioxx.freetoreaddate | 2015-11-11 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2015-11-11| | en_UK |
local.rioxx.filename | Swingler_HEDA_Revision.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-662-44993-6 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Swingler_HEDA_Revision.pdf | Fulltext - Accepted Version | 188.7 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.