Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/22443
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abidin, Ahmad Faisal | en_UK |
dc.contributor.author | Kolberg, Mario | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.editor | Trovati, M | en_UK |
dc.contributor.editor | Hill, R | en_UK |
dc.contributor.editor | Anjum, A | en_UK |
dc.contributor.editor | Zhu, SY | en_UK |
dc.contributor.editor | Liu, L | en_UK |
dc.date.accessioned | 2015-11-06T23:21:20Z | - |
dc.date.available | 2015-11-06T23:21:20Z | - |
dc.date.issued | 2015-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/22443 | - |
dc.description.abstract | Accurate bus arrival time prediction is key for improving the attractiveness of public transport, as it helps users better manage their travel schedule. This paper proposes a model of bus arrival time prediction, which aims to improve arrival time accuracy. This model is intended to function as a pre-processing stage to handle real world input data in advance of further processing by a Kalman Filtering model; as such, the model is able to overcome the data processing limitations in existing models, and can improve accuracy of output information. The arrival time is predicted using a Kalman Filter (KF) model, by using information acquired from social network communication, especially Twitter. The KF Model predicts the arrival time by filtering the noise or disturbance during the journey. Twitter is one example of a Big Data source that offers a huge amount of unstructured data that can be analyzed and utilized for improving arrival time predictions. Twitter offers an API to retrieve live, real-time (road traffic) information, and offers semantic analysis of the retrieved twitter data. Twitter data, which has been processed, can be considered as a new input for route calculations and updates. This data will be fed into KF models for further processing to produce a new arrival time estimation. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Abidin AF, Kolberg M & Hussain A (2015) Integrating Twitter Traffic Information with Kalman Filter Models for Public Transportation Vehicle Arrival Time Prediction. In: Trovati M, Hill R, Anjum A, Zhu S & Liu L (eds.) Big-Data Analytics and Cloud Computing: Theory, Algorithms and Applications. Cham, Switzerland: Springer, pp. 67-82. https://doi.org/10.1007/978-3-319-25313-8_5 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Kalman Filter | en_UK |
dc.subject | Application Programming Interface | en_UK |
dc.subject | Twitter User | en_UK |
dc.subject | Large Spike | en_UK |
dc.subject | Twitter Data | en_UK |
dc.title | Integrating Twitter Traffic Information with Kalman Filter Models for Public Transportation Vehicle Arrival Time Prediction | en_UK |
dc.type | Part of book or chapter of book | en_UK |
dc.rights.embargodate | 3000-01-01 | en_UK |
dc.rights.embargoreason | [bookchapter-big-data-final (170715) (1).pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-319-25313-8_5 | en_UK |
dc.citation.spage | 67 | en_UK |
dc.citation.epage | 82 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.author.email | mko@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Big-Data Analytics and Cloud Computing: Theory, Algorithms and Applications | en_UK |
dc.citation.date | 13/01/2016 | en_UK |
dc.citation.isbn | 978-3319253114 | en_UK |
dc.citation.isbn | 978-3-319-25313-8 | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.wtid | 585147 | en_UK |
dc.contributor.orcid | 0000-0002-0930-2385 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dcterms.dateAccepted | 2016-01-13 | en_UK |
dc.date.filedepositdate | 2015-11-06 | en_UK |
rioxxterms.type | Book chapter | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Abidin, Ahmad Faisal| | en_UK |
local.rioxx.author | Kolberg, Mario|0000-0002-0930-2385 | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Trovati, M| | en_UK |
local.rioxx.contributor | Hill, R| | en_UK |
local.rioxx.contributor | Anjum, A| | en_UK |
local.rioxx.contributor | Zhu, SY| | en_UK |
local.rioxx.contributor | Liu, L| | en_UK |
local.rioxx.freetoreaddate | 3000-01-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | bookchapter-big-data-final (170715) (1).pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-319-25313-8 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
bookchapter-big-data-final (170715) (1).pdf | Fulltext - Accepted Version | 1.46 MB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.