Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22279
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorSmith, Leslieen_UK
dc.date.accessioned2016-12-08T02:41:17Z-
dc.date.available2016-12-08T02:41:17Z-
dc.date.issued2013-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/22279-
dc.description.abstractA mixed order associative neural network with n neurons and a modified Hebbian learning rule can learn any functionf : {-1,1}n → R  and reproduce its output as the network's energy function. The network weights are equal to Walsh coecients, the fixed point attractors are local maxima in the function, and partial sums across the weights of the network calculate averages for hyperplanes through the function. If the network is trained on data sampled from a distribution, then marginal and conditional probability calculations may be made and samples from the distribution generated from the network. These qualities make the network ideal for optimisation fitness function modelling and make the relationships amongst variables explicit in a way that architectures such as the MLP do not.en_UK
dc.language.isoenen_UK
dc.publisherESANNen_UK
dc.relationSwingler K & Smith L (2013) Mixed order associative networks for function approximation, optimisation and sampling. In: ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24.04.2013-26.04.2013. ESANN, pp. 23-28. http://www.i6doc.com/en/livre/?GCOI=28001100131010en_UK
dc.relation.urihttps://www.elen.ucl.ac.be/esann/en_UK
dc.rightsPublisher allows this work to be made available in this repository. Published in ESANN 2013 with the following policy: You are free to download, copy and distribute this paper, provided that you keep the reference of the paper that has been added as header to each pageen_UK
dc.titleMixed order associative networks for function approximation, optimisation and samplingen_UK
dc.typeConference Paperen_UK
dc.citation.spage23en_UK
dc.citation.epage28en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://www.i6doc.com/en/livre/?GCOI=28001100131010en_UK
dc.author.emaill.s.smith@stir.ac.uken_UK
dc.citation.btitleESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learningen_UK
dc.citation.conferencedates2013-04-24 - 2013-04-26en_UK
dc.citation.conferencelocationBruges, Belgiumen_UK
dc.citation.conferencename21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013en_UK
dc.citation.date30/04/2013en_UK
dc.citation.isbn978-287419081-0en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-84887062353en_UK
dc.identifier.wtid632541en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0002-3716-8013en_UK
dcterms.dateAccepted2013-04-30en_UK
dc.date.filedepositdate2015-09-30en_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorSmith, Leslie|0000-0002-3716-8013en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2015-09-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2015-09-30|en_UK
local.rioxx.filenameSwingler_ESANN_2013.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-287419081-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Swingler_ESANN_2013.pdfFulltext - Published Version185.12 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.