Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/22279
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Swingler, Kevin | en_UK |
dc.contributor.author | Smith, Leslie | en_UK |
dc.date.accessioned | 2016-12-08T02:41:17Z | - |
dc.date.available | 2016-12-08T02:41:17Z | - |
dc.date.issued | 2013-06 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/22279 | - |
dc.description.abstract | A mixed order associative neural network with n neurons and a modified Hebbian learning rule can learn any functionf : {-1,1}n → R and reproduce its output as the network's energy function. The network weights are equal to Walsh coecients, the fixed point attractors are local maxima in the function, and partial sums across the weights of the network calculate averages for hyperplanes through the function. If the network is trained on data sampled from a distribution, then marginal and conditional probability calculations may be made and samples from the distribution generated from the network. These qualities make the network ideal for optimisation fitness function modelling and make the relationships amongst variables explicit in a way that architectures such as the MLP do not. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | ESANN | en_UK |
dc.relation | Swingler K & Smith L (2013) Mixed order associative networks for function approximation, optimisation and sampling. In: ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24.04.2013-26.04.2013. ESANN, pp. 23-28. http://www.i6doc.com/en/livre/?GCOI=28001100131010 | en_UK |
dc.relation.uri | https://www.elen.ucl.ac.be/esann/ | en_UK |
dc.rights | Publisher allows this work to be made available in this repository. Published in ESANN 2013 with the following policy: You are free to download, copy and distribute this paper, provided that you keep the reference of the paper that has been added as header to each page | en_UK |
dc.title | Mixed order associative networks for function approximation, optimisation and sampling | en_UK |
dc.type | Conference Paper | en_UK |
dc.citation.spage | 23 | en_UK |
dc.citation.epage | 28 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.identifier.url | http://www.i6doc.com/en/livre/?GCOI=28001100131010 | en_UK |
dc.author.email | l.s.smith@stir.ac.uk | en_UK |
dc.citation.btitle | ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | en_UK |
dc.citation.conferencedates | 2013-04-24 - 2013-04-26 | en_UK |
dc.citation.conferencelocation | Bruges, Belgium | en_UK |
dc.citation.conferencename | 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013 | en_UK |
dc.citation.date | 30/04/2013 | en_UK |
dc.citation.isbn | 978-287419081-0 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.scopusid | 2-s2.0-84887062353 | en_UK |
dc.identifier.wtid | 632541 | en_UK |
dc.contributor.orcid | 0000-0002-4517-9433 | en_UK |
dc.contributor.orcid | 0000-0002-3716-8013 | en_UK |
dcterms.dateAccepted | 2013-04-30 | en_UK |
dc.date.filedepositdate | 2015-09-30 | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Swingler, Kevin|0000-0002-4517-9433 | en_UK |
local.rioxx.author | Smith, Leslie|0000-0002-3716-8013 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2015-09-30 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2015-09-30| | en_UK |
local.rioxx.filename | Swingler_ESANN_2013.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-287419081-0 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Swingler_ESANN_2013.pdf | Fulltext - Published Version | 185.12 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.