Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorO'Hare, Anthonyen_UK
dc.date.accessioned2017-03-29T22:46:10Z-
dc.date.available2017-03-29T22:46:10Z-
dc.date.issued2015-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/22224-
dc.description.abstractModel parameterinferencehas become increasingly popular in recent years in the field of computational epidemiology, especially for models with a large number of parameters. Techniques such asApproximate Bayesian Computation(ABC) ormaximum/partial likelihoodsare commonly used toinferparameters in phenomenological models that best describe some set of data. These techniques rely on efficient exploration of the underlying parameter space, which is difficult in high dimensions, especially if there are correlations between the parameters in the model that may not be knowna priori. The aim of this article is to demonstrate the use of the recently invented Adaptive Metropolis algorithm for exploring parameter space in a practical way through the use of a simple epidemiological model.en_UK
dc.language.isoenen_UK
dc.publisherMary Ann Liebert, Incen_UK
dc.relationO'Hare A (2015) Inference in High Dimensional Parameter Space. Journal of Computational Biology, 22 (11), pp. 997-1004. https://doi.org/10.1089/cmb.2015.0086en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectbayesianen_UK
dc.subjectinferenceen_UK
dc.subjectAdaptive Metropolis algorithmen_UK
dc.subjectMonte Carloen_UK
dc.subjectepidemiologyen_UK
dc.subjectlikelihooden_UK
dc.subjectMarkov Chainen_UK
dc.titleInference in High Dimensional Parameter Spaceen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-16en_UK
dc.rights.embargoreason[CMB-2015-0086-O'Hare_1P.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1089/cmb.2015.0086en_UK
dc.identifier.pmid26176624en_UK
dc.citation.jtitleJournal of Computational Biologyen_UK
dc.citation.issn1557-8666en_UK
dc.citation.issn1066-5277en_UK
dc.citation.volume22en_UK
dc.citation.issue11en_UK
dc.citation.spage997en_UK
dc.citation.epage1004en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailanthony.ohare@stir.ac.uken_UK
dc.citation.date15/07/2015en_UK
dc.contributor.affiliationComplex Systems - LEGACYen_UK
dc.identifier.isiWOS:000364289700003en_UK
dc.identifier.scopusid2-s2.0-84946721284en_UK
dc.identifier.wtid590659en_UK
dc.contributor.orcid0000-0003-2561-9582en_UK
dc.date.accepted2015-05-15en_UK
dcterms.dateAccepted2015-05-15en_UK
dc.date.filedepositdate2015-09-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorO'Hare, Anthony|0000-0003-2561-9582en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-16en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameCMB-2015-0086-O'Hare_1P.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1066-5277en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
CMB-2015-0086-O'Hare_1P.pdfFulltext - Published Version179.33 kBAdobe PDFUnder Embargo until 2999-12-16    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.