Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/22024
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Greenwood, Sarah | en_UK |
dc.contributor.author | Chen, Jan-Chang | en_UK |
dc.contributor.author | Chen, Chaur-Tzuhn | en_UK |
dc.contributor.author | Jump, Alistair | en_UK |
dc.date.accessioned | 2015-10-21T00:13:54Z | - |
dc.date.available | 2015-10-21T00:13:54Z | - |
dc.date.issued | 2014-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/22024 | - |
dc.description.abstract | Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Wiley-Blackwell | en_UK |
dc.relation | Greenwood S, Chen J, Chen C & Jump A (2014) Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Global Change Biology, 20 (12), pp. 3756-3766. https://doi.org/10.1111/gcb.12710 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Abies kawakamii | en_UK |
dc.subject | aerial photography | en_UK |
dc.subject | alpine habitat | en_UK |
dc.subject | central mountain range | en_UK |
dc.subject | climate change | en_UK |
dc.subject | forest density | en_UK |
dc.subject | fragmentation | en_UK |
dc.subject | Taiwan | en_UK |
dc.subject | topography | en_UK |
dc.title | Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-21 | en_UK |
dc.rights.embargoreason | [Greenwood_et_al-2014-Global_Change_Biology.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1111/gcb.12710 | en_UK |
dc.identifier.pmid | 25141823 | en_UK |
dc.citation.jtitle | Global Change Biology | en_UK |
dc.citation.issn | 1365-2486 | en_UK |
dc.citation.issn | 1354-1013 | en_UK |
dc.citation.volume | 20 | en_UK |
dc.citation.issue | 12 | en_UK |
dc.citation.spage | 3756 | en_UK |
dc.citation.epage | 3766 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | a.s.jump@stir.ac.uk | en_UK |
dc.citation.date | 20/08/2014 | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | National Pingtung University of Science and Technology | en_UK |
dc.contributor.affiliation | National Pingtung University of Science and Technology | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.identifier.isi | WOS:000344375700017 | en_UK |
dc.identifier.scopusid | 2-s2.0-84911870740 | en_UK |
dc.identifier.wtid | 597318 | en_UK |
dc.contributor.orcid | 0000-0001-9104-7936 | en_UK |
dc.contributor.orcid | 0000-0002-2167-6451 | en_UK |
dc.date.accepted | 2014-08-12 | en_UK |
dcterms.dateAccepted | 2014-08-12 | en_UK |
dc.date.filedepositdate | 2015-07-10 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Greenwood, Sarah|0000-0001-9104-7936 | en_UK |
local.rioxx.author | Chen, Jan-Chang| | en_UK |
local.rioxx.author | Chen, Chaur-Tzuhn| | en_UK |
local.rioxx.author | Jump, Alistair|0000-0002-2167-6451 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2999-12-21 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Greenwood_et_al-2014-Global_Change_Biology.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1354-1013 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Greenwood_et_al-2014-Global_Change_Biology.pdf | Fulltext - Published Version | 730.28 kB | Adobe PDF | Under Embargo until 2999-12-21 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.