Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/21939
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBartie, Philen_UK
dc.contributor.authorMackaness, Williamen_UK
dc.contributor.authorPetrenz, Philippen_UK
dc.contributor.authorDickinson, Annaen_UK
dc.date.accessioned2015-07-03T23:32:08Z-
dc.date.available2015-07-03T23:32:08Z-
dc.date.issued2015-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/21939-
dc.description.abstractThere is considerable interest in developing landmark saliency models as a basis for describing urban landscapes, and in constructing wayfinding instructions, for text and spoken dialogue based systems. The challenge lies in knowing the truthfulness of such models; is what the model considers salient the same as what is perceived by the user? This paper presents a web based experiment in which users were asked to tag and label the most salient features from urban images for the purposes of navigation and exploration. In order to rank landmark popularity in each scene it was necessary to determine which tags related to the same object (e.g. tags relating to a particular café). Existing clustering techniques did not perform well for this task, and it was therefore necessary to develop a new spatial-semantic clustering method which considered the proximity of nearby tags and the similarity of their label content. The annotation similarity was initially calculated using trigrams in conjunction with a synonym list, generating a set of networks formed from the links between related tags. These networks were used to build related word lists encapsulating conceptual connections (e.g. church tower related to clock) so that during a secondary pass of the data related network segments could be merged. This approach gives interesting insight into the partonomic relationships between the constituent parts of landmarks and the range and frequency of terms used to describe them. The knowledge gained from this will be used to help calibrate a landmark saliency model, and to gain a deeper understanding of the terms typically associated with different types of landmarks.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationBartie P, Mackaness W, Petrenz P & Dickinson A (2015) Identifying related landmark tags in urban scenes using spatial and semantic clustering. Computers, Environment and Urban Systems, 52, pp. 48-57. https://doi.org/10.1016/j.compenvurbsys.2015.03.003en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.subjectUrban landmarksen_UK
dc.subjectScene taggingen_UK
dc.subjectTrigramen_UK
dc.subjectTag clusteringen_UK
dc.subjectMereologyen_UK
dc.subjectFeature graphsen_UK
dc.titleIdentifying related landmark tags in urban scenes using spatial and semantic clusteringen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2017-01-29en_UK
dc.rights.embargoreason[Identifying Related Landmark Tags using Spatial and Semantic clustering.pdf] Publisher requires embargo of 18 months after formal publication.en_UK
dc.identifier.doi10.1016/j.compenvurbsys.2015.03.003en_UK
dc.citation.jtitleComputers, Environment and Urban Systemsen_UK
dc.citation.issn0198-9715en_UK
dc.citation.volume52en_UK
dc.citation.spage48en_UK
dc.citation.epage57en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailphil.bartie@stir.ac.uken_UK
dc.citation.date28/03/2015en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:000355709000005en_UK
dc.identifier.scopusid2-s2.0-84925604656en_UK
dc.identifier.wtid597467en_UK
dc.contributor.orcid0000-0002-1139-0716en_UK
dc.date.accepted2015-03-14en_UK
dcterms.dateAccepted2015-03-14en_UK
dc.date.filedepositdate2015-07-01en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBartie, Phil|0000-0002-1139-0716en_UK
local.rioxx.authorMackaness, William|en_UK
local.rioxx.authorPetrenz, Philipp|en_UK
local.rioxx.authorDickinson, Anna|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-01-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-01-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2017-01-29|en_UK
local.rioxx.filenameIdentifying Related Landmark Tags using Spatial and Semantic clustering.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0198-9715en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Identifying Related Landmark Tags using Spatial and Semantic clustering.pdfFulltext - Accepted Version1.52 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.