Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/21803
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation
Author(s): Brownlee, Alexander E I
Wright, Jonathan A
Contact Email: sbr@cs.stir.ac.uk
Keywords: Simulation-based optimisation
Multi-objective
Constraints
Surrogate
NSGA-II
Issue Date: Aug-2015
Date Deposited: 25-May-2015
Citation: Brownlee AEI & Wright JA (2015) Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Applied Soft Computing, 33, pp. 114-126. https://doi.org/10.1016/j.asoc.2015.04.010
Abstract: Reducing building energy demand is a crucial part of the global response to climate change, and evolutionary algorithms (EAs) coupled to building performance simulation (BPS) are an increasingly popular tool for this task. Further uptake of EAs in this industry is hindered by BPS being computationally intensive: optimisation runs taking days or longer are impractical in a time-competitive environment. Surrogate fitness models are a possible solution to this problem, but few approaches have been demonstrated for multi-objective, constrained or discrete problems, typical of the optimisation problems in building design. This paper presents a modified version of a surrogate based on radial basis function networks, combined with a deterministic scheme to deal with approximation error in the constraints by allowing some infeasible solutions in the population. Different combinations of these are integrated with Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and applied to three instances of a typical building optimisation problem. The comparisons show that the surrogate and constraint handling combined offer improved run-time and final solution quality. The paper concludes with detailed investigations of the constraint handling and fitness landscape to explain differences in performance.
DOI Link: 10.1016/j.asoc.2015.04.010
Rights: This article is open-access. Open access publishing allows free access to and distribution of published articles where the author retains copyright of their work by employing a Creative Commons attribution licence. Proper attribution of authorship and correct citation details should be given.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
1-s2.0-S1568494615002240-main-final.pdfFulltext - Published Version1.59 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.