Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/21796
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Newton, Michael | en_UK |
dc.contributor.author | Smith, Leslie | en_UK |
dc.date.accessioned | 2015-05-21T23:19:08Z | - |
dc.date.available | 2015-05-21T23:19:08Z | - |
dc.date.issued | 2012-06 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/21796 | - |
dc.description.abstract | Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Acoustical Society of America | en_UK |
dc.relation | Newton M & Smith L (2012) A neurally-inspired musical instrument classification system based upon the sound onset. Journal of the Acoustical Society of America, 131 (6), pp. 4785-4798. https://doi.org/10.1121/1.4707535 | en_UK |
dc.rights | Publisher policy allows this work to be made available in this repository. Published in Journal of the Acoustical Society of America by Acoustical Society of America. The original publication is available at: http://scitation.aip.org/content/asa/journal/jasa/131/6/10.1121/1.4707535 | en_UK |
dc.title | A neurally-inspired musical instrument classification system based upon the sound onset | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1121/1.4707535 | en_UK |
dc.citation.jtitle | Journal of the Acoustical Society of America | en_UK |
dc.citation.issn | 1520-8524 | en_UK |
dc.citation.issn | 0001-4966 | en_UK |
dc.citation.volume | 131 | en_UK |
dc.citation.issue | 6 | en_UK |
dc.citation.spage | 4785 | en_UK |
dc.citation.epage | 4798 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.author.email | l.s.smith@stir.ac.uk | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000309133500067 | en_UK |
dc.identifier.scopusid | 2-s2.0-84896113726 | en_UK |
dc.identifier.wtid | 624281 | en_UK |
dc.contributor.orcid | 0000-0002-3716-8013 | en_UK |
dc.date.accepted | 2012-04-06 | en_UK |
dcterms.dateAccepted | 2012-04-06 | en_UK |
dc.date.filedepositdate | 2015-05-21 | en_UK |
dc.relation.funderproject | A multichannel adaptive integrated MEMS/CMOS microphone. | en_UK |
dc.relation.funderref | EP/G062609/1 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Newton, Michael| | en_UK |
local.rioxx.author | Smith, Leslie|0000-0002-3716-8013 | en_UK |
local.rioxx.project | EP/G062609/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2015-05-21 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2015-05-21| | en_UK |
local.rioxx.filename | FINAL_JAS004785.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1520-8524 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FINAL_JAS004785.pdf | Fulltext - Published Version | 1.31 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.