Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoria-Alcaraz, Jorge Aen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorSwan, Jerryen_UK
dc.contributor.authorCarpio, Martinen_UK
dc.contributor.authorPuga, Hectoren_UK
dc.contributor.authorBurke, Edmunden_UK
dc.date.accessioned2018-02-20T23:49:41Z-
dc.date.available2018-02-20T23:49:41Z-
dc.date.issued2014-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20749-
dc.description.abstractCourse timetabling is an important and recurring administrative activity in most educational institutions. This article combines a general modeling methodology with effective learning hyper-heuristics to solve this problem. The proposed hyper-heuristics are based on an iterated local search procedure that autonomously combines a set of move operators. Two types of learning for operator selection are contrasted: a static (offline) approach, with a clear distinction between training and execution phases; and a dynamic approach that learns on the fly. The resulting algorithms are tested over the set of real-world instances collected by the first and second International Timetabling competitions. The dynamic scheme statistically outperforms the static counterpart, and produces competitive results when compared to the state-of-the-art, even producing a new best-known solution. Importantly, our study illustrates that algorithms with increased autonomy and generality can outperform human designed problem-specific algorithms.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationSoria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H & Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem. European Journal of Operational Research, 238 (1), pp. 77-86. https://doi.org/10.1016/j.ejor.2014.03.046en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H & Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem, European Journal of Operational Research, 238 (1), pp. 77-86. DOI: 10.1016/j.ejor.2014.03.046 © 2015, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectTimetablingen_UK
dc.subjectHyper-heuristicsen_UK
dc.subjectHeuristicsen_UK
dc.subjectMetaheuristicsen_UK
dc.subjectCombinatorial optimizationen_UK
dc.titleEffective learning hyper-heuristics for the course timetabling problemen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2016-09-14en_UK
dc.rights.embargoreason[hhcttp.pdf] Publisher requires embargo of 24 months after formal publication.en_UK
dc.identifier.doi10.1016/j.ejor.2014.03.046en_UK
dc.citation.jtitleEuropean Journal of Operational Researchen_UK
dc.citation.issn0377-2217en_UK
dc.citation.volume238en_UK
dc.citation.issue1en_UK
dc.citation.spage77en_UK
dc.citation.epage86en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.citation.date13/04/2014en_UK
dc.contributor.affiliationTechnological Institute of Leonen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationTechnological Institute of Leonen_UK
dc.contributor.affiliationTechnological Institute of Leonen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:000337261600007en_UK
dc.identifier.scopusid2-s2.0-84901228979en_UK
dc.identifier.wtid623674en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2014-03-27en_UK
dcterms.dateAccepted2014-03-27en_UK
dc.date.filedepositdate2014-07-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSoria-Alcaraz, Jorge A|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorSwan, Jerry|en_UK
local.rioxx.authorCarpio, Martin|en_UK
local.rioxx.authorPuga, Hector|en_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-09-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-09-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2016-09-14|en_UK
local.rioxx.filenamehhcttp.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0377-2217en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
hhcttp.pdfFulltext - Accepted Version953.71 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.