Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorSmith, Leslieen_UK
dc.date.accessioned2015-09-30T23:12:35Z-
dc.date.available2015-09-30T23:12:35Z-
dc.date.issued2014-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20648-
dc.description.abstractA neural network with mixed order weights, n neurons and a modified Hebbian learning rule can learn any function f:{-1,1}n→Rf:{-1,1}n→R and reproduce its output as the network׳s energy function. The network weights are equal to Walsh coefficients, the fixed point attractors are local maxima in the function, and partial sums across the weights of the network calculate averages for hyperplanes through the function. If the network is trained on data sampled from a distribution, then marginal and conditional probability calculations may be made and samples from the distribution generated from the network. These qualities make the network ideal for optimisation fitness function modelling and make the relationships amongst variables explicit in a way that architectures such as the MLP do not.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationSwingler K & Smith L (2014) Training and making calculations with mixed order hyper-networks. Neurocomputing, 141, pp. 65-75. https://doi.org/10.1016/j.neucom.2013.11.041en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectHigh order neural networksen_UK
dc.subjectOptimisationen_UK
dc.subjectWalsh functionsen_UK
dc.titleTraining and making calculations with mixed order hyper-networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-09en_UK
dc.rights.embargoreason[neurocomputing 2014.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.neucom.2013.11.041en_UK
dc.citation.jtitleNeurocomputingen_UK
dc.citation.issn0925-2312en_UK
dc.citation.volume141en_UK
dc.citation.spage65en_UK
dc.citation.epage75en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaill.s.smith@stir.ac.uken_UK
dc.citation.date08/04/2014en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000338403800008en_UK
dc.identifier.scopusid2-s2.0-84901508751en_UK
dc.identifier.wtid624408en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0002-3716-8013en_UK
dc.date.accepted2013-11-27en_UK
dcterms.dateAccepted2013-11-27en_UK
dc.date.filedepositdate2014-07-17en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorSmith, Leslie|0000-0002-3716-8013en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-09en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameneurocomputing 2014.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0925-2312en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
neurocomputing 2014.pdfFulltext - Published Version732.06 kBAdobe PDFUnder Embargo until 2999-12-09    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.