Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/20648
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Swingler, Kevin | en_UK |
dc.contributor.author | Smith, Leslie | en_UK |
dc.date.accessioned | 2015-09-30T23:12:35Z | - |
dc.date.available | 2015-09-30T23:12:35Z | - |
dc.date.issued | 2014-10 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/20648 | - |
dc.description.abstract | A neural network with mixed order weights, n neurons and a modified Hebbian learning rule can learn any function f:{-1,1}n→Rf:{-1,1}n→R and reproduce its output as the network׳s energy function. The network weights are equal to Walsh coefficients, the fixed point attractors are local maxima in the function, and partial sums across the weights of the network calculate averages for hyperplanes through the function. If the network is trained on data sampled from a distribution, then marginal and conditional probability calculations may be made and samples from the distribution generated from the network. These qualities make the network ideal for optimisation fitness function modelling and make the relationships amongst variables explicit in a way that architectures such as the MLP do not. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Swingler K & Smith L (2014) Training and making calculations with mixed order hyper-networks. Neurocomputing, 141, pp. 65-75. https://doi.org/10.1016/j.neucom.2013.11.041 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | High order neural networks | en_UK |
dc.subject | Optimisation | en_UK |
dc.subject | Walsh functions | en_UK |
dc.title | Training and making calculations with mixed order hyper-networks | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-09 | en_UK |
dc.rights.embargoreason | [neurocomputing 2014.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1016/j.neucom.2013.11.041 | en_UK |
dc.citation.jtitle | Neurocomputing | en_UK |
dc.citation.issn | 0925-2312 | en_UK |
dc.citation.volume | 141 | en_UK |
dc.citation.spage | 65 | en_UK |
dc.citation.epage | 75 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | l.s.smith@stir.ac.uk | en_UK |
dc.citation.date | 08/04/2014 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000338403800008 | en_UK |
dc.identifier.scopusid | 2-s2.0-84901508751 | en_UK |
dc.identifier.wtid | 624408 | en_UK |
dc.contributor.orcid | 0000-0002-4517-9433 | en_UK |
dc.contributor.orcid | 0000-0002-3716-8013 | en_UK |
dc.date.accepted | 2013-11-27 | en_UK |
dcterms.dateAccepted | 2013-11-27 | en_UK |
dc.date.filedepositdate | 2014-07-17 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Swingler, Kevin|0000-0002-4517-9433 | en_UK |
local.rioxx.author | Smith, Leslie|0000-0002-3716-8013 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2999-12-09 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | neurocomputing 2014.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0925-2312 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
neurocomputing 2014.pdf | Fulltext - Published Version | 732.06 kB | Adobe PDF | Under Embargo until 2999-12-09 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.