Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhillips, Williamen_UK
dc.date.accessioned2018-01-09T04:08:19Z-
dc.date.available2018-01-09T04:08:19Z-
dc.date.issued2012-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20494-
dc.description.abstractThis paper discusses concepts of self-organized complexity and the theory of Coherent Infomax in the light of Jaynes’s probability theory. Coherent Infomax, shows, in principle, how adaptively self-organized complexity can be preserved and improved by using probabilistic inference that is context-sensitive. It argues that neural systems do this by combining local reliability with flexible, holistic, context-sensitivity. Jaynes argued that the logic of probabilistic inference shows it to be based upon Bayesian and Maximum Entropy methods or special cases of them. He presented his probability theory as the logic of science; here it is considered as the logic of life. It is concluded that the theory of Coherent Infomax specifies a general objective for probabilistic inference, and that contextual interactions in neural systems perform functions required of the scientist within Jaynes’s theory.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationPhillips W (2012) Self-Organized Complexity and Coherent Infomax from the Viewpoint of Jaynes's Probability Theory. Information, 3 (1), pp. 1-15. https://doi.org/10.3390/info3010001en_UK
dc.rights© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_UK
dc.subjectself-organizationen_UK
dc.subjectcomplexityen_UK
dc.subjectCoherent Infomaxen_UK
dc.subjectJaynesen_UK
dc.subjectprobability theoryen_UK
dc.subjectprobabilistic inferenceen_UK
dc.subjectneural computationen_UK
dc.subjectinformationen_UK
dc.subjectcontext-sensitivityen_UK
dc.subjectcoordinationen_UK
dc.titleSelf-Organized Complexity and Coherent Infomax from the Viewpoint of Jaynes's Probability Theoryen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/info3010001en_UK
dc.citation.jtitleInformationen_UK
dc.citation.issn2078-2489en_UK
dc.citation.volume3en_UK
dc.citation.issue1en_UK
dc.citation.spage1en_UK
dc.citation.epage15en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailw.a.phillips@stir.ac.uken_UK
dc.contributor.affiliationPsychologyen_UK
dc.identifier.isiWOS:000214790800001en_UK
dc.identifier.scopusid2-s2.0-84860318576en_UK
dc.identifier.wtid626529en_UK
dc.contributor.orcid0000-0001-6036-2255en_UK
dc.date.accepted2011-12-29en_UK
dcterms.dateAccepted2011-12-29en_UK
dc.date.filedepositdate2014-06-19en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPhillips, William|0000-0001-6036-2255en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-06-19en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/3.0/|2014-06-19|en_UK
local.rioxx.filenamePhillips Information 2012.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
Phillips Information 2012.pdfFulltext - Published Version144.91 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.