Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20202
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.contributor.authorMorozov, Andrewen_UK
dc.date.accessioned2014-07-08T23:40:04Z-
dc.date.available2014-07-08T23:40:04Z-
dc.date.issued2014-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20202-
dc.description.abstractIn this paper we explore the eco-evolutionary dynamics of a predator-prey model, where the prey population is structured according to a certain life history trait. The trait distribution within the prey population is the result of interplay between genetic inheritance and mutation, as well as selectivity in the consumption of prey by the predator. The evolutionary processes are considered to take place on the same time scale as ecological dynamics, i.e. we consider the evolution to be rapid. Previously published results show that population structuring and rapid evolution in such predator-prey system can stabilize an otherwise globally unstable dynamics even with an unlimited carrying capacity of prey. However, those findings were only based on direct numerical simulation of equations and obtained for particular parameterizations of model functions, which obviously calls into question the correctness and generality of the previous results. The main objective of the current study is to treat the model analytically and consider various parameterizations of predator selectivity and inheritance kernel. We investigate the existence of a coexistence stationary state in the model and carry out stability analysis of this state. We derive expressions for the Hopf bifurcation curve which can be used for constructing bifurcation diagrams in the parameter space without the need for a direct numerical simulation of the underlying integro-differential equations. We analytically show the possibility of stabilization of a globally unstable predator-prey system with prey structuring. We prove that the coexistence stationary state is stable when the saturation in the predation term is low. Finally, for a class of kernels describing genetic inheritance and mutation we show that stability of the predator-prey interaction will require a selectivity of predation according to the life trait.en_UK
dc.language.isoenen_UK
dc.publisherCambridge University Press for EDP Sciencesen_UK
dc.relationFarkas JZ & Morozov A (2014) Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems. Mathematical Modelling of Natural Phenomena, 9 (3), pp. 26-46. https://doi.org/10.1051/mmnp/20149303en_UK
dc.rightsMathematical Modelling of Natural Phenomena / Volume 9 / Issue 03 / May 2014, pp © EDP Sciences, 2014 The original publication is available at http://www.mmnp-journal.orgen_UK
dc.subjectIntegro-differential equationsen_UK
dc.subjectstructured populationsen_UK
dc.subjectpopulation persistenceen_UK
dc.subjectstability analysisen_UK
dc.subjectspectral theory of operatorsen_UK
dc.titleModelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systemsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1051/mmnp/20149303en_UK
dc.citation.jtitleMathematical Modelling of Natural Phenomenaen_UK
dc.citation.issn1760-6101en_UK
dc.citation.issn0973-5348en_UK
dc.citation.volume9en_UK
dc.citation.issue3en_UK
dc.citation.spage26en_UK
dc.citation.epage46en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationUniversity of Leicesteren_UK
dc.identifier.isiWOS:000336957800003en_UK
dc.identifier.scopusid2-s2.0-84947862764en_UK
dc.identifier.wtid630572en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dc.date.accepted2014-03-01en_UK
dcterms.dateAccepted2014-03-01en_UK
dc.date.filedepositdate2014-05-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.authorMorozov, Andrew|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-05-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2014-05-14|en_UK
local.rioxx.filenameFarkasMorozovStir.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0973-5348en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
FarkasMorozovStir.pdfFulltext - Accepted Version369.69 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.