Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20195
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalsina, Angelen_UK
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2014-06-06T23:56:24Z-
dc.date.available2014-06-06T23:56:24Z-
dc.date.issued2014-03en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20195-
dc.description.abstractWe study the question of existence of positive steady states of nonlinear evolution equations. We recast the steady state equation in the form of eigenvalue problems for a parametrised family of unbounded linear operators, which are generators of strongly continuous semigroups; and a xed point problem. In case of irreducible governing semigroups we consider evolution equations with non-monotone nonlinearities of dimension two, and we establish a new xed point theorem for set-valued maps. In case of reducible governing semigroups we establish results for monotone nonlinearities of any nite dimension n. In addition, we establish a non-quasinilpotency result for a class of strictly positive operators, which are neither irreducible nor compact, in general. We illustrate our theoretical results with examples of partial dierential equations arising in structured population dynamics. In particular, we establish existence of positive steady states of a size-structured juvenile- adult and a structured consumer-resource population model, as well as for a selection-mutation model with distributed recruitment process.en_UK
dc.language.isoenen_UK
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)en_UK
dc.relationCalsina A & Farkas JZ (2014) Positive Steady States of Evolution Equations with Finite Dimensional Nonlinearities. SIAM Journal on Mathematical Analysis, 46 (2), pp. 1406-1426. https://doi.org/10.1137/130931199en_UK
dc.rightsPublisher policy allows this work to be made available in this repository. Published in SIAM Journal of Mathematical Analysis, Volume 46, Issue 2, pp. 1406-1426, 2014, by SIAM. The original publication is available at: http://epubs.siam.org/doi/abs/10.1137/130931199en_UK
dc.subjectNonlinear evolution equationsen_UK
dc.subjectpositive steady statesen_UK
dc.subjectxed points of multivalued mapsen_UK
dc.subjectsemigroups of operatorsen_UK
dc.subjectspectral theory of positive operatorsen_UK
dc.subjectstructured populationsen_UK
dc.titlePositive Steady States of Evolution Equations with Finite Dimensional Nonlinearitiesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1137/130931199en_UK
dc.citation.jtitleSIAM Journal on Mathematical Analysisen_UK
dc.citation.issn0036-1410en_UK
dc.citation.volume46en_UK
dc.citation.issue2en_UK
dc.citation.spage1406en_UK
dc.citation.epage1426en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.contributor.affiliationUniversitat Autonoma de Barcelonaen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000335818400014en_UK
dc.identifier.scopusid2-s2.0-84902665614en_UK
dc.identifier.wtid630559en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dc.date.accepted2014-02-01en_UK
dcterms.dateAccepted2014-02-01en_UK
dc.date.filedepositdate2014-05-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCalsina, Angel|en_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-05-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2014-05-14|en_UK
local.rioxx.filenamess-2d-siam-final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0036-1410en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
ss-2d-siam-final.pdfFulltext - Accepted Version383.52 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.