http://hdl.handle.net/1893/20029
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Lack of Control of Nitrite Assimilation by Ammonium in an Oceanic Picocyanobacterium, Synechococcus sp. Strain WH 8103 |
Author(s): | Wyman, Michael Bird, Clare |
Contact Email: | michael.wyman@stir.ac.uk |
Keywords: | ABILITY ABUNDANCE AMMONIUM ASSIMILATION CELLS Control expression gene Genes Growth LEVEL levels marine media NITROGEN other RAE STRAINS SURFACE TRAIT WATER WATERS |
Issue Date: | May-2007 |
Date Deposited: | 2-May-2014 |
Citation: | Wyman M & Bird C (2007) Lack of Control of Nitrite Assimilation by Ammonium in an Oceanic Picocyanobacterium, Synechococcus sp. Strain WH 8103. Applied and Environmental Microbiology, 73 (9), pp. 3028-3033. https://doi.org/10.1128/AEM.02606-06 |
Abstract: | In cyanobacteria, the transcriptional activator NtcA is involved in global nitrogen control and, in the absence of ammonium, regulates the expression of genes involved in the assimilation of alternative nitrogen sources. The oceanic picocyanobacterium Synechococcus sp. strain WH 8103 harbors a copy of ntcA, but in the present study, we show that unlike other marine cyanobacteria that have been investigated, this strain is capable of coassimilating nitrite when grown in the presence of ammonium. Transcript levels for the genes encoding the nitrate/nitrite-bispecific permease NrtP and nitrate reductase (NarB) were substantially down-regulated by ammonium, whereas the abundances of nitrite reductase (NirA) transcripts were similar in nitrite- and ammonium-grown cells. The growth of Synechococcus sp. strain WH 8103 in medium containing both ammonium and nitrite resulted in only minor changes in the expression profile in comparison to that of nitrite-grown cells with the exception that the gene encoding the high-affinity ammonium transporter Amt1 was down-regulated to the levels seen in ammonium-grown cells. Whereas the expression of nrtP, narB, and amt1 appears to be NtcA dependent in this marine cyanobacterium, the transcription and expression of nirA appear not to be. The ability to coassimilate nitrite and reduced-nitrogen sources like ammonium may be an adaptive trait that enables oceanic strains like Synechococcus sp. strain WH 8103 to exploit the low nitrite concentrations found in oceanic surface waters that are not available to their principal and more numerous competitor, Prochlorococcus. |
DOI Link: | 10.1128/AEM.02606-06 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Appl Environ Microbiol 2007.pdf | Fulltext - Published Version | 356.7 kB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.