Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/19813
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Qinghaoen_UK
dc.contributor.authorXie, Dizhien_UK
dc.contributor.authorWang, Shuqien_UK
dc.contributor.authorYou, Cuihongen_UK
dc.contributor.authorMonroig, Oscaren_UK
dc.contributor.authorTocher, Douglas Ren_UK
dc.contributor.authorLi, Yuanyouen_UK
dc.date.accessioned2014-07-08T23:36:56Z-
dc.date.available2014-07-08T23:36:56Z-
dc.date.issued2014-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/19813-
dc.description.abstractBiosynthesis in vertebrates of long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids requires the catalysis by fatty acyl desaturases (Fads). A vertebrate Fad with Δ4 activity catalyzing the direct conversion of 22:5n-3 to DHA was discovered in the marine teleost rabbitfish Siganus canaliculatus. Recent studies in vertebrates have shown that miRNAs may participate in the regulation of lipid metabolism at post-transcription level. However, their roles in LC-PUFA biosynthesis were not known. In the present study, in silico analysis predicts that the rabbitfish Δ4 Fad may be a target of miR-17 and thus we cloned miR-17, which is located at the forepart of the miR-17-92 cluster. Dual luciferase reporter assays demonstrated that miR-17 targeted the 3'UTR of Δ4 Fad directly. Furthermore, the expression level of miR-17 displayed an inverse pattern with that of Δ4 Fad mRNA in gill, liver and eyes, and also the Δ4 Fad protein quantity in rabbitfish liver. Incubation of rabbitfish primary hepatocytes with linoleic acid (LA; 18:2n-6), α-linolenic acid (LNA; 18:3n-3), EPA or DHA showed differential effects on miR-17, Δ4 Fad and Δ6/Δ5 Fad expression. LNA promoted the expression of miR-17 and Δ6/Δ5 Fad, but suppressed the expression of Δ4 Fad. In contrast, LA and EPA decreased the expression of miR-17 and Δ6/Δ5 Fad, but had no effect on Δ4 Fad. However, all the above were down-regulated by DHA. These data indicate that miR-17 was involved in the regulation of LC-PUFA biosynthesis in rabbitfish liver by targeting Δ4 Fad.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationZhang Q, Xie D, Wang S, You C, Monroig O, Tocher DR & Li Y (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids, 1841 (7), pp. 934-943. https://doi.org/10.1016/j.bbalip.2014.03.009en_UK
dc.rightsPublished in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids by Elsevier; Elsevier believes that individual authors should be able to distribute their accepted author manuscripts for their personal voluntary needs and interests, e.g. posting to their websites or their institution’s repository, e-mailing to colleagues. The Elsevier Policy is as follows: Authors retain the right to use the accepted author manuscript for personal use, internal institutional use and for permitted scholarly posting provided that these are not for purposes of commercial use or systematic distribution. An "accepted author manuscript" is the author’s version of the manuscript of an article that has been accepted for publication and which may include any author-incorporated changes suggested through the processes of submission processing, peer review, and editor-author communications.en_UK
dc.subjectmiR-17en_UK
dc.subjectΔ4 Faden_UK
dc.subjectΔ6/Δ5 Faden_UK
dc.subjectLC-PUFA biosynthesisen_UK
dc.subjectrabbitfishen_UK
dc.subjectSiganus canaliculatusen_UK
dc.titlemiR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatusen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.bbalip.2014.03.009en_UK
dc.identifier.pmid24681164en_UK
dc.citation.jtitleBiochimica et Biophysica Acta Molecular and Cell Biology of Lipidsen_UK
dc.citation.issn1388-1981en_UK
dc.citation.volume1841en_UK
dc.citation.issue7en_UK
dc.citation.spage934en_UK
dc.citation.epage943en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildrt1@stir.ac.uken_UK
dc.citation.date28/03/2014en_UK
dc.contributor.affiliationShantou Universityen_UK
dc.contributor.affiliationShantou Universityen_UK
dc.contributor.affiliationShantou Universityen_UK
dc.contributor.affiliationShantou Universityen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationShantou Universityen_UK
dc.identifier.isiWOS:000336698800002en_UK
dc.identifier.scopusid2-s2.0-84899410008en_UK
dc.identifier.wtid635602en_UK
dc.contributor.orcid0000-0001-8712-0440en_UK
dc.contributor.orcid0000-0002-8603-9410en_UK
dc.date.accepted2014-03-21en_UK
dcterms.dateAccepted2014-03-21en_UK
dc.date.filedepositdate2014-04-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorZhang, Qinghao|en_UK
local.rioxx.authorXie, Dizhi|en_UK
local.rioxx.authorWang, Shuqi|en_UK
local.rioxx.authorYou, Cuihong|en_UK
local.rioxx.authorMonroig, Oscar|0000-0001-8712-0440en_UK
local.rioxx.authorTocher, Douglas R|0000-0002-8603-9410en_UK
local.rioxx.authorLi, Yuanyou|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-04-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2014-04-14|en_UK
local.rioxx.filenameAccepted version.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1388-1981en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
Accepted version.pdfFulltext - Accepted Version938.59 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.