Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/19685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorMcCall, Johnen_UK
dc.contributor.authorZhang, Qingfuen_UK
dc.date.accessioned2015-10-10T00:13:33Z-
dc.date.available2015-10-10T00:13:33Zen_UK
dc.date.issued2013-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/19685-
dc.description.abstractFitness modelling has received growing interest from the evolutionary computation community in recent years. With a fitness model, one can improve evolutionary algorithm efficiency by directly sampling new solutions, developing hybrid guided evolutionary operators or using the model as a surrogate for an expensive fitness function. This paper addresses several issues on fitness modelling of discrete functions, in particular how modelling quality and efficiency can be improved. We define the Markov network fitness model (MFM) in terms of Walsh functions. We explore the relationship between the MFM and fitness in a number of discrete problems, showing how the parameters of the fitness model can identify qualitative features of the fitness function. We define the fitness prediction correlation, a metric to measure fitness modelling capability of local and global fitness models. We use this metric to investigate the effects of population size and selection on the trade-off between model quality and complexity for the MFM.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationBrownlee A, McCall J & Zhang Q (2013) Fitness modeling with markov networks. IEEE Transactions on Evolutionary Computation, 17 (6), pp. 862-879. https://doi.org/10.1109/TEVC.2013.2281538en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectEstimation of distribution algorithmsen_UK
dc.subjectGraphical modelsen_UK
dc.subjectMarkov random fieldsen_UK
dc.titleFitness modeling with markov networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[mn-fitnessmodelling.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/TEVC.2013.2281538en_UK
dc.citation.jtitleIEEE Transactions on Evolutionary Computationen_UK
dc.citation.issn1089-778Xen_UK
dc.citation.volume17en_UK
dc.citation.issue6en_UK
dc.citation.spage862en_UK
dc.citation.epage879en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailsbr@cs.stir.ac.uken_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationUniversity of Essexen_UK
dc.identifier.isiWOS:000327970300008en_UK
dc.identifier.scopusid2-s2.0-84890322757en_UK
dc.identifier.wtid639035en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dcterms.dateAccepted2013-12-31en_UK
dc.date.filedepositdate2014-03-31en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorMcCall, John|en_UK
local.rioxx.authorZhang, Qingfu|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenamemn-fitnessmodelling.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1089-778Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
mn-fitnessmodelling.pdfFulltext - Published Version665.97 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.