Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/19399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAickelin, Uween_UK
dc.contributor.authorBurke, Edmunden_UK
dc.contributor.authorLi, Jingpengen_UK
dc.date.accessioned2018-02-09T00:28:04Z-
dc.date.available2018-02-09T00:28:04Z-
dc.date.issued2007-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/19399-
dc.description.abstractThis paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, that is, we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, that is, an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (ie the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real-world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.en_UK
dc.language.isoenen_UK
dc.publisherPalgrave Macmillanen_UK
dc.relationAickelin U, Burke E & Li J (2007) An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering. Journal of the Operational Research Society, 58 (12), pp. 1574-1585. https://doi.org/10.1057/palgrave.jors.2602308en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectnurse rosteringen_UK
dc.subjectestimation of distribution algorithmen_UK
dc.subjectlocal searchen_UK
dc.subjectant colony optimizationen_UK
dc.titleAn estimation of distribution algorithm with intelligent local search for rule-based nurse rosteringen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[Aickelin et al_JORS_2007.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1057/palgrave.jors.2602308en_UK
dc.citation.jtitleJournal of the Operational Research Societyen_UK
dc.citation.issn1476-9360en_UK
dc.citation.issn0160-5682en_UK
dc.citation.volume58en_UK
dc.citation.issue12en_UK
dc.citation.spage1574en_UK
dc.citation.epage1585en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaile.k.burke@stir.ac.uken_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:000251029200005en_UK
dc.identifier.scopusid2-s2.0-35548991809en_UK
dc.identifier.wtid695197en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dcterms.dateAccepted2007-12-31en_UK
dc.date.filedepositdate2014-03-05en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAickelin, Uwe|en_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameAickelin et al_JORS_2007.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0160-5682en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Aickelin et al_JORS_2007.pdfFulltext - Published Version277.37 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.