Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/18501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardoso, Domingos Men_UK
dc.contributor.authorRowlinson, Peteren_UK
dc.date.accessioned2014-01-31T23:13:51Z-
dc.date.available2014-01-31T23:13:51Z-
dc.date.issued2010-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/18501-
dc.description.abstractLet G be a simple graph with least eigenvalue λ and let S be a set of vertices in G which induce a subgraph with mean degree k. We use a quadratic programming technique in conjunction with the main angles of G to establish an upper bound of the form |S|⩽inf{(k+t)qG(t):t>-λ} where qG is a rational function determined by the spectra of G and its complement. In the case k=0 we obtain improved bounds for the independence number of various benchmark graphs.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationCardoso DM & Rowlinson P (2010) Spectral upper bounds for the order of a k-regular induced subgraph. Linear Algebra and Its Applications, 433 (5), pp. 1031-1037. https://doi.org/10.1016/j.laa.2010.04.029en_UK
dc.rightsPublished in Linear Algebra and Its Applications by Elsevier; Elsevier believes that individual authors should be able to distribute their accepted author manuscripts for their personal voluntary needs and interests, e.g. posting to their websites or their institution’s repository, e-mailing to colleagues. The Elsevier Policy is as follows: Authors retain the right to use the accepted author manuscript for personal use, internal institutional use and for permitted scholarly posting provided that these are not for purposes of commercial use or systematic distribution. An "accepted author manuscript" is the author’s version of the manuscript of an article that has been accepted for publication and which may include any author-incorporated changes suggested through the processes of submission processing, peer review, and editor-author communications.en_UK
dc.subjectGraphen_UK
dc.subjectMain eigenvalueen_UK
dc.subjectIndependence numberen_UK
dc.subjectClique numberen_UK
dc.titleSpectral upper bounds for the order of a k-regular induced subgraphen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.laa.2010.04.029en_UK
dc.citation.jtitleLinear Algebra and its Applicationsen_UK
dc.citation.issn0024-3795en_UK
dc.citation.volume433en_UK
dc.citation.issue5en_UK
dc.citation.spage1031en_UK
dc.citation.epage1037en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailpeter.rowlinson@stir.ac.uken_UK
dc.contributor.affiliationUniversity of Aveiroen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000279413600016en_UK
dc.identifier.scopusid2-s2.0-77953230883en_UK
dc.identifier.wtid653128en_UK
dc.contributor.orcid0000-0003-4878-3203en_UK
dcterms.dateAccepted2010-10-31en_UK
dc.date.filedepositdate2014-01-30en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCardoso, Domingos M|en_UK
local.rioxx.authorRowlinson, Peter|0000-0003-4878-3203en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-01-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2014-01-30|en_UK
local.rioxx.filenameSpectralBoundsVer20.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0024-3795en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
SpectralBoundsVer20.pdfFulltext - Accepted Version277.17 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.