Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/18457
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRowlinson, Peteren_UK
dc.date.accessioned2014-01-29T23:14:35Z-
dc.date.available2014-01-29T23:14:35Z-
dc.date.issued2013-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/18457-
dc.description.abstractLet G be a graph of order n with an eigenvalue μ≠-1,0 of multiplicity k<n-2. It is known that k≤n+√2-2n+¼, equivalently k≤½t(t-1), where t=n-k>2. The only known examples with k=½t(t-1) are 3K2 (with n=6, μ=1, k=3) and the maximal exceptional graph G36 (with n=36, μ=-2, k=28). We show that no other example can be constructed from a strongly regular graph in the same way as G36 is constructed from the line graph L(K9).en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationRowlinson P (2013) On graphs with an eigenvalue of maximal multiplicity. Discrete Mathematics, 313 (11), pp. 1162-1166. https://doi.org/10.1016/j.disc.2011.11.024en_UK
dc.rightsPublished in Discrete Mathematics by Elsevier; Elsevier believes that individual authors should be able to distribute their accepted author manuscripts for their personal voluntary needs and interests, e.g. posting to their websites or their institution’s repository, e-mailing to colleagues. The Elsevier Policy is as follows: Authors retain the right to use the accepted author manuscript for personal use, internal institutional use and for permitted scholarly posting provided that these are not for purposes of commercial use or systematic distribution. An "accepted author manuscript" is the author’s version of the manuscript of an article that has been accepted for publication and which may include any author-incorporated changes suggested through the processes of submission processing, peer review, and editor-author communications.en_UK
dc.subjectEigenvalue multiplicityen_UK
dc.subjectStrongly regular graphen_UK
dc.subjectStar seten_UK
dc.titleOn graphs with an eigenvalue of maximal multiplicityen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.disc.2011.11.024en_UK
dc.citation.jtitleDiscrete Mathematicsen_UK
dc.citation.issn0012-365Xen_UK
dc.citation.volume313en_UK
dc.citation.issue11en_UK
dc.citation.spage1162en_UK
dc.citation.epage1166en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailpeter.rowlinson@stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000317810100005en_UK
dc.identifier.scopusid2-s2.0-84887087134en_UK
dc.identifier.wtid654654en_UK
dc.contributor.orcid0000-0003-4878-3203en_UK
dcterms.dateAccepted2013-06-30en_UK
dc.date.filedepositdate2014-01-28en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorRowlinson, Peter|0000-0003-4878-3203en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2014-01-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2014-01-28|en_UK
local.rioxx.filenameBoundVer4A.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0012-365Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
BoundVer4A.pdfFulltext - Accepted Version267.78 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.