Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/18416
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Quilliam, Richard | en_UK |
dc.contributor.author | Glanville, Helen C | en_UK |
dc.contributor.author | Wade, Stephen C | en_UK |
dc.contributor.author | Jones, David L | en_UK |
dc.date.accessioned | 2014-01-23T23:07:34Z | - |
dc.date.available | 2014-01-23T23:07:34Z | en_UK |
dc.date.issued | 2013-10 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/18416 | - |
dc.description.abstract | Biochar application has become a novel and emergent technology for sequestering C, improving soil quality and crop production, and is a potential win-win strategy for ecosystem service delivery. Biochar addition can also stimulate soil microbial activity, and although it is unclear exactly why biochar should benefit soil microorganisms, it is thought that the large surface area and volume of pores provide a significant habitat for microbes. The aim of this study was to determine the level of microbial colonisation of wood-derived biochar that had been buried in an agricultural soil for three years. We have examined the level of colonisation on the internal and external surfaces of field-aged biochar by scanning electron microscopy, and used 14C-labelled glucose to quantify the rates of microbial activity in different spatial niches of the biochar and the surrounding soil. Microbial colonisation of field-aged biochar was very sparse, with no obvious differences between the external and internal surfaces. At the high field application rate of 50 t ha-1, biochar contributed only 6.52 ± 0.11% of the total soil pore space and 7.35 ± 0.81% of the total soil surface area of the topsoil (0-30 cm). Further, 17.46 ± 0.02% of the biochar pores were effectively uninhabitable for most microbes, being <1 μm in diameter. The initial rate of microbial mineralization of 14C-labelled glucose was significantly greater in the control bulk soil and the soil immediately surrounding the biochar than on the biochar external and internal surfaces. However, lower C use efficiency values of microbes on, or within, the biochar also suggested lower available C status or differences in the structure of the microbial community in the biochar relative to the surrounding soil. This study suggests that, at least in the short term (≤3 y), biochar does not provide a significant habitat for soil microbes. While biochar is extremely recalcitrant and largely unavailable to soil microbes, changes in soil physicochemical properties and the introduction of metabolically available labile compounds into the surrounding soil (the ‘charosphere') may significantly alter soil microbial activity and structure, which could ultimately affect soil-plant-microbe interactions. Therefore, before the wide-scale application of biochar to agricultural land is exploited, it is important that we understand further how the properties of biochar positively or negatively affect soil microbial communities, and in turn, how they interact with, and colonise biochar. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier | en_UK |
dc.relation | Quilliam R, Glanville HC, Wade SC & Jones DL (2013) Life in the 'charosphere' - Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, 65, pp. 287-293. https://doi.org/10.1016/j.soilbio.2013.06.004 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Black carbon | en_UK |
dc.subject | Decomposition | en_UK |
dc.subject | Soil microbial ecology | en_UK |
dc.subject | Soil organic matter | en_UK |
dc.subject | Pore volume | en_UK |
dc.subject | Soil–microbe interactions | en_UK |
dc.title | Life in the 'charosphere' - Does biochar in agricultural soil provide a significant habitat for microorganisms? | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 3000-01-01 | en_UK |
dc.rights.embargoreason | [Soil Biology Biochemistry 2013.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1016/j.soilbio.2013.06.004 | en_UK |
dc.citation.jtitle | Soil Biology and Biochemistry | en_UK |
dc.citation.issn | 0038-0717 | en_UK |
dc.citation.volume | 65 | en_UK |
dc.citation.spage | 287 | en_UK |
dc.citation.epage | 293 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | richard.quilliam@stir.ac.uk | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Bangor University | en_UK |
dc.contributor.affiliation | Aberystwyth University | en_UK |
dc.contributor.affiliation | Bangor University | en_UK |
dc.identifier.isi | WOS:000323686800034 | en_UK |
dc.identifier.scopusid | 2-s2.0-84880283115 | en_UK |
dc.identifier.wtid | 678227 | en_UK |
dc.contributor.orcid | 0000-0001-7020-4410 | en_UK |
dc.date.accepted | 2013-06-10 | en_UK |
dcterms.dateAccepted | 2013-06-10 | en_UK |
dc.date.filedepositdate | 2014-01-23 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Quilliam, Richard|0000-0001-7020-4410 | en_UK |
local.rioxx.author | Glanville, Helen C| | en_UK |
local.rioxx.author | Wade, Stephen C| | en_UK |
local.rioxx.author | Jones, David L| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 3000-01-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Soil Biology Biochemistry 2013.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0038-0717 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Soil Biology Biochemistry 2013.pdf | Fulltext - Published Version | 1.03 MB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.