Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCruz-Garcia, Lourdesen_UK
dc.contributor.authorMinghetti, Matteoen_UK
dc.contributor.authorNavarro, Isabelen_UK
dc.contributor.authorTocher, Douglas Ren_UK
dc.date.accessioned2013-06-09T06:04:03Z-
dc.date.available2013-06-09T06:04:03Z-
dc.date.issued2009-05en_UK
dc.identifier.urihttp://hdl.handle.net/1893/1827-
dc.description.abstractFish are important sources of high quality protein, essential minerals such as iodine and selenium, vitamins including A, D and E, and omega-3 fatty acids in the human diet. With declining fisheries worldwide, farmed fish constitute an ever-increasing proportion of fish in the food basket. Sustainable development of aquaculture dictates that diets will have to contain increasing levels of plant products that are devoid of cholesterol, but contain phytosterols that are known to have physiological effects in mammals. Liver X receptors (LXR) are transcription factors whose activity is modulated by sterols, with activation inducing cholesterol catabolism and de novo fatty acid biosynthesis in liver. Transcriptomic analysis has shown that substitution of fish meal and oil with plant products induces genes of cholesterol and fatty acid metabolism in salmonids. Here we report the cloning of LXR cDNAs from two species of salmonid fish that are important in aquaculture. The full-length cDNA (mRNA) of LXR obtained from salmon was shown to be 3766 bp, which included a 5’-untranslated region (UTR) of 412 bp and a 3’-UTR of 1960 bp and an open reading frame (ORF) of 1394 bp, which specified a protein of 462 amino acids. The trout LXR full-length cDNA was 2056 bp, including 5’- and 3’-UTRs of 219 and 547 bp, respectively, and an ORF of 1290 bp, which specified a protein of 427 amino acids. The protein sequences included characteristic features of mammalian LXRs, including the DNA binding (DBD), containing P-box, ligand binding (LBD) and activation function-2 (AF-2) domains, D-box, D (hinge) region, and eight cysteines that belong to the two zinc fingers. Phylogenetic analysis clustered the salmonid LXRs together, more closely with zebrafish and more distantly from medaka and stickleback. A pair-wise comparison among vertebrate LXR sequences showed the amino acid sequence predicted by the salmon LXR ORF showed greatest identity to that of trout 97%, and 97%, 87% and 81% identity to LXRs of zebrafish, frog and human (LXRα). The trout LXR ORF showed 96%, 92% and 82% identity to LXRs of zebrafish, frog and human (LXRα). Surprisingly, the expression of LXR was lowest in liver of all tissues examined and in salmon the greatest expression was observed in pyloric caeca with liver showing intermediate expression. It is likely that tissue expression was affected by the physiological status of the sampled animals. Certainly, nutritional, environmental and/or developmental regulation was evident in salmon, where the expression of LXR in liver was higher in fish in seawater than in freshwater, and higher in fish fed fish oil compared to fish fed vegetable oil in adult salmon.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationCruz-Garcia L, Minghetti M, Navarro I & Tocher DR (2009) Molecular cloning, tissue expression and regulation of Liver X Receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 153 (1), pp. 81-88. http://www.sciencedirect.com/science/journal/10964959; https://doi.org/10.1016/j.cbpb.2009.02.001en_UK
dc.rightsPublished in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology by Elsevier.en_UK
dc.subjectAtlantic salmonen_UK
dc.subjectRainbow trouten_UK
dc.subjectliver X receptoren_UK
dc.subjecttranscription factorsen_UK
dc.subjectlipid metabolismen_UK
dc.subjectLXR genesen_UK
dc.subjectgene expressionen_UK
dc.subjectvegetable oilen_UK
dc.subjectcholesterolen_UK
dc.subjectfish oilen_UK
dc.subjectnutritional regulationen_UK
dc.subjectAtlantic salmonen_UK
dc.subjectFish oilen_UK
dc.subjectRainbow trouten_UK
dc.titleMolecular cloning, tissue expression and regulation of Liver X Receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss)en_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.cbpb.2009.02.001en_UK
dc.citation.jtitleComparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biologyen_UK
dc.citation.issn1096-4959en_UK
dc.citation.volume153en_UK
dc.citation.issue1en_UK
dc.citation.spage81en_UK
dc.citation.epage88en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.sciencedirect.com/science/journal/10964959en_UK
dc.author.emaildrt1@stir.ac.uken_UK
dc.contributor.affiliationUniversitat de Barcelonaen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationUniversitat de Barcelonaen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.identifier.isiWOS:000265591200011en_UK
dc.identifier.scopusid2-s2.0-63249124984en_UK
dc.identifier.wtid836281en_UK
dc.contributor.orcid0000-0002-8603-9410en_UK
dcterms.dateAccepted2009-05-31en_UK
dc.date.filedepositdate2009-11-26en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCruz-Garcia, Lourdes|en_UK
local.rioxx.authorMinghetti, Matteo|en_UK
local.rioxx.authorNavarro, Isabel|en_UK
local.rioxx.authorTocher, Douglas R|0000-0002-8603-9410en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2009-11-26en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2009-11-26|en_UK
local.rioxx.filenameSalmonid LXRs revised.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1096-4959en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
Salmonid LXRs revised.pdfFulltext - Accepted Version674.48 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.