Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/18261
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurke, Edmunden_UK
dc.contributor.authorGendreau, Michelen_UK
dc.contributor.authorHyde, Matthewen_UK
dc.contributor.authorKendall, Grahamen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorOzcan, Enderen_UK
dc.contributor.authorQu, Rongen_UK
dc.date.accessioned2018-02-15T00:29:09Z-
dc.date.available2018-02-15T00:29:09Z-
dc.date.issued2013-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/18261-
dc.description.abstractHyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of automating the design of heuristic methods to solve hard computational search problems. An underlying strategic research challenge is to develop more generally applicable search methodologies. The term hyper-heuristic is relatively new; it was first used in 2000 to describe heuristics to choose heuristics in the context of combinatorial optimisation. However, the idea of automating the design of heuristics is not new; it can be traced back to the 1960s. The definition of hyper-heuristics has been recently extended to refer to a search method or learning mechanism for selecting or generating heuristics to solve computational search problems. Two main hyper-heuristic categories can be considered: heuristic selection and heuristic generation. The distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or heuristic components) rather than directly on the search space of solutions to the underlying problem that is being addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including their origin and intellectual roots, a detailed account of the main types of approaches, and an overview of some related areas. Current research trends and directions for future research are also discussed.en_UK
dc.language.isoenen_UK
dc.publisherPalgrave Macmillanen_UK
dc.relationBurke E, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E & Qu R (2013) Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64 (12), pp. 1695-1724. https://doi.org/10.1057/jors.2013.71en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectHyper-heuristicsen_UK
dc.subjectevolutionary computationen_UK
dc.subjectmetaheuristicsen_UK
dc.subjectmachine learningen_UK
dc.subjectcombinatorial optimisationen_UK
dc.subjectschedulingen_UK
dc.titleHyper-heuristics: A survey of the state of the arten_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[jors201371a.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1057/jors.2013.71en_UK
dc.citation.jtitleJournal of the Operational Research Societyen_UK
dc.citation.issn1476-9360en_UK
dc.citation.issn0160-5682en_UK
dc.citation.volume64en_UK
dc.citation.issue12en_UK
dc.citation.spage1695en_UK
dc.citation.epage1724en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity of Montrealen_UK
dc.contributor.affiliationUniversity of East Angliaen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.identifier.isiWOS:000327720200001en_UK
dc.identifier.scopusid2-s2.0-84888031698en_UK
dc.identifier.wtid659535en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dcterms.dateAccepted2013-07-31en_UK
dc.date.filedepositdate2014-01-13en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.authorGendreau, Michel|en_UK
local.rioxx.authorHyde, Matthew|en_UK
local.rioxx.authorKendall, Graham|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorOzcan, Ender|en_UK
local.rioxx.authorQu, Rong|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenamejors201371a.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0160-5682en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
jors201371a.pdfFulltext - Published Version405.31 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.