http://hdl.handle.net/1893/17613
Appears in Collections: | Psychology Journal Articles |
Peer Review Status: | Refereed |
Title: | Coherent Infomax as a Computational Goal for Neural Systems |
Author(s): | Kay, James W Phillips, William |
Contact Email: | w.a.phillips@stir.ac.uk |
Keywords: | Neural networks Coherent Infomax Dynamic coordination Contextual modulation Learning rules Synaptic plasticity Bayesian analysis Neural coding Information theory |
Issue Date: | Feb-2011 |
Date Deposited: | 12-Nov-2013 |
Citation: | Kay JW & Phillips W (2011) Coherent Infomax as a Computational Goal for Neural Systems. Bulletin of Mathematical Biology, 73 (2), pp. 344-372. https://doi.org/10.1007/s11538-010-9564-x |
Abstract: | Signal processing in the cerebral cortex is thought to involve a common multi-purpose algorithm embodied in a canonical cortical micro-circuit that is replicated many times over both within and across cortical regions. Operation of this algorithm produces widely distributed but coherent and relevant patterns of activity. The theory of Coherent Infomax provides a formal specification of the objectives of such an algorithm. It also formally derives specifications for both the short-term processing dynamics and for the learning rules whereby the connection strengths between units in the network can be adapted to the environment in which the system finds itself. A central assumption of the theory is that the local processors can combine reliable signal coding with flexible use of those codes because they have two classes of synaptic connection: driving connections which specify the information content of the neural signals, and contextual connections which modulate that signal processing. Here, we make the biological relevance of this theory more explicit by putting more emphasis upon the contextual guidance of ongoing processing, by showing that Coherent Infomax is consistent with a particular Bayesian interpretation for the contextual guidance of learning and processing, by explicitly specifying rules for on-line learning, and by suggesting approximations by which the learning rules can be made computationally feasible within systems composed of very many local processors. |
DOI Link: | 10.1007/s11538-010-9564-x |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Coherent Infomax as a Computational Goal for Neural Systems.pdf | Fulltext - Published Version | 832.68 kB | Adobe PDF | Under Embargo until 2999-12-29 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.