Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Rock spectral classes observed by the Spirit Rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills
Author(s): Farrand, William H
Bell III, James F
Johnson, Jeffrey R
Arvidson, Raymond E
Crumpler, Larry S
Hurowitz, Joel A
Schröder, Christian
Contact Email:
Keywords: Mars
remote sensing
Issue Date: 16-Dec-2008
Date Deposited: 28-Oct-2013
Citation: Farrand WH, Bell III JF, Johnson JR, Arvidson RE, Crumpler LS, Hurowitz JA & Schröder C (2008) Rock spectral classes observed by the Spirit Rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills. Journal of Geophysical Research: Planets, 113 (E12), Art. No.: E12S38.
Abstract: This paper examines the ferrous and ferric iron mineralogy of rocks inferred from 246 visible/near-infrared (430–1010 nm) multispectral observations made by the Mars Exploration Rover Spirit’s Pancam on its traverse from its landing site to its second Winter Haven location. Principal component, correspondence analyses, and a sequential maximum angle convex cone technique were used to identify 14 candidate classes. Spectra from the West Spur of Husband Hill and the Watchtower area had the highest 535 and 601 nm band depths indicating that these areas were more oxidized. Differences in the depth and band center of a near infrared (NIR) absorption feature were observed using 904 nm band depth and 803:904 nm ratio and parameters gauging the 754–864 and 754–1009 nm slopes. Spectra of rocks from the southern flank of Husband Hill had negative 754–1009 nm slopes and a broad NIR absorption consistent with high olivine abundances. Rocks observed on the lower West Spur, at the Cumberland Ridge locale, at the Husband Hill summit, and at the Haskin Ridge locale had deep 904 nm band depths and steep 754–864 nm slopes consistent with greater pyroxene abundances. These observations are consistent with results on iron-bearing mineralogy from Spirit’s Mo¨ssbauer spectrometer. Comparisons of these rock spectral classes with a set of terrestrial analog samples found similarities between the West Spur and Watchtower classes and red hematite-bearing impact melts. Fewer similarities were found in comparisons of the Columbia Hills classes with basaltic hydrovolcanic tephras.
DOI Link: 10.1029/2008JE003237
Rights: Copyright 2008 by the American Geophysical Union. AGU allows authors to deposit their journal articles if the version is the final published citable version of record, the AGU copyright statement is clearly visible on the posting, and the posting is made 6 months after official publication by the AGU.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.