Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGheyas, Iffat Aen_UK
dc.contributor.authorSmith, Leslieen_UK
dc.date.accessioned2013-06-09T05:06:28Z-
dc.date.available2013-06-09T05:06:28Z-
dc.date.issued2010-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/1654-
dc.description.abstractSearching for an optimal feature subset from a high dimensional feature space is known to be an NP-complete problem. We present a hybrid algorithm, SAGA, for this task. SAGA combines the ability to avoid being trapped in a local minimum of Simulated Annealing with the very high rate of convergence of the crossover operator of Genetic Algorithms, the strong local search ability of greedy algorithms and the high computational efficiency of Generalized Regression Neural Networks. We compare the performance over time of SAGA and well-known algorithms on synthetic and real datasets. The results show that SAGA outperforms existing algorithms.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationGheyas IA & Smith L (2010) Feature subset selection in large dimensionality domains. Pattern Recognition, 43 (1), pp. 5-13. http://www.sciencedirect.com/science/journal/00313203; https://doi.org/10.1016/j.patcog.2009.06.009en_UK
dc.rightsPublished in Pattern Recognition by Elsevier.en_UK
dc.subjectfeature subset selectionen_UK
dc.subjecthigh dimensional datasetsen_UK
dc.subjectNeural networks (Computing science)en_UK
dc.subjectGenetic algorithmsen_UK
dc.titleFeature subset selection in large dimensionality domainsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.patcog.2009.06.009en_UK
dc.citation.jtitlePattern Recognitionen_UK
dc.citation.issn0031-3203en_UK
dc.citation.volume43en_UK
dc.citation.issue1en_UK
dc.citation.spage5en_UK
dc.citation.epage13en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.sciencedirect.com/science/journal/00313203en_UK
dc.author.emaill.s.smith@cs.stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000270261500001en_UK
dc.identifier.scopusid2-s2.0-68949155378en_UK
dc.identifier.wtid829950en_UK
dc.contributor.orcid0000-0002-3716-8013en_UK
dcterms.dateAccepted2010-01-31en_UK
dc.date.filedepositdate2009-10-01en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorGheyas, Iffat A|en_UK
local.rioxx.authorSmith, Leslie|0000-0002-3716-8013en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2010-01-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2010-01-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2010-01-31|en_UK
local.rioxx.filenamePR_3589_corrected.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0031-3203en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
PR_3589_corrected.pdfFulltext - Accepted Version478.04 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.