Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/16524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCambria, Eriken_UK
dc.contributor.authorGrassi, Marcoen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorHavasi, Catherineen_UK
dc.date.accessioned2017-08-12T01:33:11Z-
dc.date.available2017-08-12T01:33:11Zen_UK
dc.date.issued2012-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/16524-
dc.description.abstractIn a world in which millions of people express their opinions about commercial products in blogs, wikis, fora, chats and social networks, the distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand or organization. Opinion mining for product positioning, in fact, is getting a more and more popular research field but the extraction of useful information from social media is not a simple task. In this work we merge AI and Semantic Web techniques to extract, encode and represent this unstructured information. In particular, we use Sentic Computing, a multi-disciplinary approach to opinion mining and sentiment analysis, to semantically and affectively analyze text and encode results in a semantic aware format according to different web ontologies. Eventually we represent this information as an interconnected knowledge base which is browsable through a multi-faceted classification website.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationCambria E, Grassi M, Hussain A & Havasi C (2012) Sentic Computing for social media marketing. Multimedia Tools and Applications, 59 (2), pp. 557-577. https://doi.org/10.1007/s11042-011-0815-0en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectAIen_UK
dc.subjectSemantic Weben_UK
dc.subjectKnowledge base managementen_UK
dc.subjectNLPen_UK
dc.subjectOpinion mining and sentiment analysisen_UK
dc.titleSentic Computing for social media marketingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[Sentic Computing for social media marketing.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s11042-011-0815-0en_UK
dc.citation.jtitleMultimedia Tools and Applicationsen_UK
dc.citation.issn1573-7721en_UK
dc.citation.issn1380-7501en_UK
dc.citation.volume59en_UK
dc.citation.issue2en_UK
dc.citation.spage557en_UK
dc.citation.epage577en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailamir.hussain@stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationMarche Polytechnic Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationMassachusetts Institute of Technologyen_UK
dc.identifier.isiWOS:000304134000007en_UK
dc.identifier.scopusid2-s2.0-84861876874en_UK
dc.identifier.wtid737746en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dcterms.dateAccepted2012-07-31en_UK
dc.date.filedepositdate2013-08-26en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorCambria, Erik|en_UK
local.rioxx.authorGrassi, Marco|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorHavasi, Catherine|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameSentic Computing for social media marketing.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1380-7501en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Sentic Computing for social media marketing.pdfFulltext - Published Version874.44 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.