Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/1628
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Farkas, Jozsef Zoltan | en_UK |
dc.contributor.author | Hagen, Thomas | en_UK |
dc.date.accessioned | 2013-06-09T02:55:23Z | - |
dc.date.available | 2013-06-09T02:55:23Z | - |
dc.date.issued | 2007-09 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/1628 | - |
dc.description.abstract | We employ semigroup and spectral methods to analyze the linear stability of positive stationary solutions of a generalized size-structured Daphnia model. Using the regularity properties of the governing semigroup, we are able to formulate a general stability condition which permits an intuitively clear interpretation in a special case of model ingredients. Moreover, we derive a comprehensive instability criterion that reduces to an elegant instability condition for the classical Daphnia population model in terms of the inherent net reproduction rate of Daphnia individuals. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Taylor & Francis | en_UK |
dc.relation | Farkas JZ & Hagen T (2007) Linear stability and positivity results for a generalized size-structured Daphnia model with inflow§. Applicable Analysis, 86 (9), pp. 1087-1103. http://www.informaworld.com/smpp/content~db=all~content=a782010393; https://doi.org/10.1080/00036810701545634 | en_UK |
dc.rights | Published in Applicable Analysis by Taylor & Francis.; This is an electronic version of an article published in Applicable Analysis, Volume 86, Issue 9, September 2007, pp. 1087 - 1103. Applicable Analysis is available online at: http://www.informaworld.com/openurl?genre=article&issn=0003-6811 &volume=86&issue=9&spage=1087 | en_UK |
dc.subject | Predator-prey interaction | en_UK |
dc.subject | structured population dynamics | en_UK |
dc.subject | semigroup methods | en_UK |
dc.subject | Daphnia | en_UK |
dc.subject | Daphnia | en_UK |
dc.subject | Population dynamics | en_UK |
dc.title | Linear stability and positivity results for a generalized size-structured Daphnia model with inflow§ | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1080/00036810701545634 | en_UK |
dc.citation.jtitle | Applicable Analysis | en_UK |
dc.citation.issn | 1563-504X | en_UK |
dc.citation.issn | 0003-6811 | en_UK |
dc.citation.volume | 86 | en_UK |
dc.citation.issue | 9 | en_UK |
dc.citation.spage | 1087 | en_UK |
dc.citation.epage | 1103 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.identifier.url | http://www.informaworld.com/smpp/content~db=all~content=a782010393 | en_UK |
dc.author.email | jzf@maths.stir.ac.uk | en_UK |
dc.contributor.affiliation | Mathematics | en_UK |
dc.contributor.affiliation | University of Memphis | en_UK |
dc.identifier.isi | WOS:000250809500003 | en_UK |
dc.identifier.wtid | 829916 | en_UK |
dc.contributor.orcid | 0000-0002-8794-4834 | en_UK |
dcterms.dateAccepted | 2007-09-30 | en_UK |
dc.date.filedepositdate | 2009-09-21 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Farkas, Jozsef Zoltan|0000-0002-8794-4834 | en_UK |
local.rioxx.author | Hagen, Thomas| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2009-09-21 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2009-09-21| | en_UK |
local.rioxx.filename | Daphnia-AA-revised3-Stirling.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0003-6811 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Daphnia-AA-revised3-Stirling.pdf | Fulltext - Accepted Version | 231.61 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.