Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1614
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNorman, Rachelen_UK
dc.contributor.authorBowers, Rogeren_UK
dc.date.accessioned2012-09-03T14:39:25Z-
dc.date.available2012-09-03T14:39:25Z-
dc.date.issued2007-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/1614-
dc.description.abstractIn this paper we present a simple theoretical framework which allows us to study the impact of constant vaccination rates in a system in which two species interact through a shared pathogen. We look at this firstly in purely theoretical terms to determine which equilibria will be stable for which parameter combinations. We then consider two special cases and determine the long term population dynamical consequences of differing vaccination strategies. In particular we describe systems for which there is a wildlife host reservoir and a domestic (target) host. We find that when the target host cannot maintain the disease alone, and the presence of the reservoir causes the target host to be eradicated by the disease, vaccinating the target species allows coexistence of the two species with the pathogen, but will not allow disease eradication. It is then shown that this result holds both when vaccination occurs at a fixed rate and when a proportion of the population is vaccinated at birth.en_UK
dc.language.isoenen_UK
dc.publisherTaylor & Francis (Routledge)en_UK
dc.relationNorman R & Bowers R (2007) A Host-Host-Pathogen Model with Vaccination and its Application to Target and Reservoir Hosts. Mathematical Population Studies, 14 (1), pp. 31-56. https://doi.org/10.1080/08898480601090667en_UK
dc.rightsPublished in Mathematical Population Studies by Taylor & Francis (Routledge).; This is an electronic version of an article published in Mathematical Population Studies, Volume 14, Issue 1, pp. 31 - 56. Mathematical Population Studies is available online at: http://www.informaworld.com/openurl?genre=article&issn=0889-8480&volume=14&issue=1&spage=31en_UK
dc.subjectvaccinationen_UK
dc.subjecttargeten_UK
dc.subjectreservoiren_UK
dc.subjectdiseaseen_UK
dc.subjectmathematical modelen_UK
dc.subjectBiological diversity conservation Scotlanden_UK
dc.subjectVirus diseasesen_UK
dc.subjectVaccinationen_UK
dc.subjectMathematical modelsen_UK
dc.titleA Host-Host-Pathogen Model with Vaccination and its Application to Target and Reservoir Hostsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1080/08898480601090667en_UK
dc.citation.jtitleMathematical Population Studiesen_UK
dc.citation.issn1547-724Xen_UK
dc.citation.issn0889-8480en_UK
dc.citation.volume14en_UK
dc.citation.issue1en_UK
dc.citation.spage31en_UK
dc.citation.epage56en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailran@cs.stir.ac.uken_UK
dc.citation.date31/01/2007en_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000243757700003en_UK
dc.identifier.scopusid2-s2.0-33845955156en_UK
dc.identifier.wtid829978en_UK
dc.contributor.orcid0000-0002-7398-6064en_UK
dcterms.dateAccepted2007-01-31en_UK
dc.date.filedepositdate2009-09-17en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorNorman, Rachel|0000-0002-7398-6064en_UK
local.rioxx.authorBowers, Roger|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2009-09-17en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2009-09-17|en_UK
local.rioxx.filenamevaccinationpaperpostrefs.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0889-8480en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
vaccinationpaperpostrefs.pdfFulltext - Accepted Version237.9 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.