Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/15715
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurke, Edmunden_UK
dc.contributor.authorGendreau, Michelen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorWalker, Jamesen_UK
dc.contributor.editorKrasnogor, Nen_UK
dc.contributor.editorLanzi, PLen_UK
dc.date.accessioned2018-02-10T03:31:30Z-
dc.date.available2018-02-10T03:31:30Z-
dc.date.issued2011en_UK
dc.identifier.urihttp://hdl.handle.net/1893/15715-
dc.description.abstractWe propose two adaptive variants of a multiple neighborhood iterated local search algorithm. These variants employ online learning techniques, also called adaptive operation selection, in order to select which perturbation to apply at each iteration step from a set of available move operators. Using a common software interface (the HyFlex framework), the proposed algorithms are tested across four hard combinatorial optimisation problems: permutation flow shop, 1D bin packing, maximum satisfiability, and personnel scheduling (including instance data from real-world industrial applications). Using the HyFlex framework, exactly the same high level search strategy can be applied to all the domains and instances. Our results confirm that the adaptive variants outperform a baseline iterated local search with uniform random selection of the move operators. We argue that the adaptive algorithms proposed are general yet powerful, and contribute to the goal of increasing the generality and applicability of heuristic search.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationBurke E, Gendreau M, Ochoa G & Walker J (2011) Adaptive iterated local search for cross-domain optimisation. In: Krasnogor N & Lanzi P (eds.) GECCO'11 Proceedings of the 13th annual conference on Genetic and Evolutionary Computation. 13th annual conference on Genetic and evolutionary computation, Dublin, Ireland, 12.07.2011-16.07.2011. New York, NY: ACM, pp. 1987-1994. http://dl.acm.org/citation.cfm?doid=2001576.2001843; https://doi.org/10.1145/2001576.2001843en_UK
dc.relation.urihttp://www.sigevo.org/gecco-2011/en_UK
dc.rightsThe publisher has not yet responded to our queries therefore this work cannot be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectComputation by Abstract Devicesen_UK
dc.subjectAlgorithm Analysis and Problem Complexityen_UK
dc.subjectArtificial Intelligence (incl. Robotics)en_UK
dc.subjectProcessor Architecturesen_UK
dc.subjectDiscrete Mathematics in Computer Scienceen_UK
dc.titleAdaptive iterated local search for cross-domain optimisationen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-07-01en_UK
dc.rights.embargoreason[adaptive iterated local search for cross-domain optimisation.pdf] The publisher has not yet responded to our queries. This work cannot be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1145/2001576.2001843en_UK
dc.citation.spage1987en_UK
dc.citation.epage1994en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://dl.acm.org/citation.cfm?doid=2001576.2001843en_UK
dc.author.emaile.k.burke@stir.ac.uken_UK
dc.citation.btitleGECCO'11 Proceedings of the 13th annual conference on Genetic and Evolutionary Computationen_UK
dc.citation.conferencedates2011-07-12 - 2011-07-16en_UK
dc.citation.conferencelocationDublin, Irelanden_UK
dc.citation.conferencename13th annual conference on Genetic and evolutionary computationen_UK
dc.citation.date31/07/2011en_UK
dc.citation.isbn978-1-4503-0557-0en_UK
dc.publisher.addressNew York, NYen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity of Montrealen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.identifier.scopusid2-s2.0-84860390107en_UK
dc.identifier.wtid695557en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dcterms.dateAccepted2011-07-31en_UK
dc.date.filedepositdate2013-07-01en_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.authorGendreau, Michel|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorWalker, James|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorKrasnogor, N|en_UK
local.rioxx.contributorLanzi, PL|en_UK
local.rioxx.freetoreaddate3000-07-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameadaptive iterated local search for cross-domain optimisation.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-0557-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
adaptive iterated local search for cross-domain optimisation.pdfFulltext - Published Version541.72 kBAdobe PDFUnder Embargo until 3000-07-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.