Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/15125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorVillasana, Minayaen_UK
dc.date.accessioned2018-01-27T01:22:34Z-
dc.date.available2018-01-27T01:22:34Z-
dc.date.issued2013-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/15125-
dc.description.abstractThis article studies the suitability of modern population based algorithms for designing combination cancer chemotherapies. The problem of designing chemotherapy schedules is expressed as an optimization problem (an optimal control problem) where the objective is to minimize the tumor size without compromising the patient's health. Given the complexity of the underlying mathematical model describing the tumor's progression (considering two types of drugs, the cell cycle and the immune system response), analytical and classical optimization methods are not suitable, instead, stochastic heuristic optimization methods are the right tool to solve the optimal control problem. Considering several solution quality and performance metrics, we compared three powerful heuristic algorithms for real-parameter optimization, namely, CMA evolution strategy, differential evolution, and particle swarm pattern search method. The three algorithms were able to successfully solve the posed problem. However, differential evolution outperformed its counterparts both in quality of the obtained solutions and efficiency of search.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationOchoa G & Villasana M (2013) Population-based optimization of cytostatic/cytotoxic combination cancer chemotherapy. Soft Computing, 17 (6), pp. 913-924. https://doi.org/10.1007/s00500-013-1043-5en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectEvolutionary algorithmsen_UK
dc.subjectDifferential evolutionen_UK
dc.subjectEvolution strategiesen_UK
dc.subjectParticle swarm optimizationen_UK
dc.subjectNumerical optimizationen_UK
dc.subjectOptimal controlen_UK
dc.subjectCancer chemotherapyen_UK
dc.subjectCombination chemotherapyen_UK
dc.titlePopulation-based optimization of cytostatic/cytotoxic combination cancer chemotherapyen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[evolchemo.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s00500-013-1043-5en_UK
dc.citation.jtitleSoft Computingen_UK
dc.citation.issn1433-7479en_UK
dc.citation.issn1432-7643en_UK
dc.citation.volume17en_UK
dc.citation.issue6en_UK
dc.citation.spage913en_UK
dc.citation.epage924en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversidad Simon Bolivaren_UK
dc.identifier.isiWOS:000319018500002en_UK
dc.identifier.scopusid2-s2.0-84877785414en_UK
dc.identifier.wtid700156en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dcterms.dateAccepted2013-06-30en_UK
dc.date.filedepositdate2013-06-06en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorVillasana, Minaya|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameevolchemo.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1432-7643en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
evolchemo.pdfFulltext - Published Version502.77 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.