Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGreve, Andreaen_UK
dc.contributor.authorSterratt, David Cen_UK
dc.contributor.authorDonaldson, Daviden_UK
dc.contributor.authorWillshaw, David Jen_UK
dc.contributor.authorvan Rossum, Mark C Wen_UK
dc.date.accessioned2013-06-09T11:51:02Z-
dc.date.available2013-06-09T11:51:02Z-
dc.date.issued2009-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/1411-
dc.description.abstractIt has been suggested that the mammalian memory system has both familiarity and recollection components. Recently, a high-capacity network to store familiarity has been proposed. Here we derive analytically the optimal learning rule for such a familiarity memory using a signalto- noise ratio analysis. We find that in the limit of large networks the covariance rule, known to be the optimal local, linear learning rule for pattern association, is also the optimal learning rule for familiarity discrimination. The capacity is independent of the sparseness of the patterns, as long as the patterns have a fixed number of bits set. The corresponding information capacity is 0.057 bits per synapse, less than typically found for associative networks.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationGreve A, Sterratt DC, Donaldson D, Willshaw DJ & van Rossum MCW (2009) Optimal learning rules for familiarity detection. Biological Cybernetics, 100 (1), pp. 11-19. https://doi.org/10.1007/s00422-008-0275-4en_UK
dc.rightsPublished in Biological Cybernetics by Springer.; The original publication is available at www.springerlink.comen_UK
dc.subjectFamiliarityen_UK
dc.subjectLearningen_UK
dc.subjectMemoryen_UK
dc.subjectMemory Recognition (Psychology)en_UK
dc.subjectMemory Recollection (Psychology)en_UK
dc.subjectMeaning (Psychology)en_UK
dc.titleOptimal learning rules for familiarity detectionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s00422-008-0275-4en_UK
dc.citation.jtitleBiological Cyberneticsen_UK
dc.citation.issn1432-0770en_UK
dc.citation.issn0340-1200en_UK
dc.citation.volume100en_UK
dc.citation.issue1en_UK
dc.citation.spage11en_UK
dc.citation.epage19en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildid1@stir.ac.uken_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:000263486700003en_UK
dc.identifier.scopusid2-s2.0-60649104372en_UK
dc.identifier.wtid808126en_UK
dc.contributor.orcid0000-0002-8036-3455en_UK
dcterms.dateAccepted2009-01-31en_UK
dc.date.filedepositdate2009-07-03en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorGreve, Andrea|en_UK
local.rioxx.authorSterratt, David C|en_UK
local.rioxx.authorDonaldson, David|0000-0002-8036-3455en_UK
local.rioxx.authorWillshaw, David J|en_UK
local.rioxx.authorvan Rossum, Mark C W|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2009-07-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2009-07-03|en_UK
local.rioxx.filenameDonaldson1.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0340-1200en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
Donaldson1.pdfFulltext - Accepted Version173.76 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.