Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1149
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDybiec, Bartlomiejen_UK
dc.contributor.authorKleczkowski, Adamen_UK
dc.contributor.authorGilligan, Christopher Aen_UK
dc.date.accessioned2018-02-18T05:54:23Z-
dc.date.available2018-02-18T05:54:23Zen_UK
dc.date.issued2009-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/1149-
dc.description.abstractWe have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an a-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the a-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.en_UK
dc.language.isoenen_UK
dc.publisherThe Royal Society / FirstCite E-Publishingen_UK
dc.relationDybiec B, Kleczkowski A & Gilligan CA (2009) Modelling control of epidemics spreading by long-range interactions. Journal of the Royal Society Interface, 6 (39), pp. 941-950. http://rsif.royalsocietypublishing.org/; https://doi.org/10.1098/rsif.2008.0468en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectepidemiological modellingen_UK
dc.subjectdisease spreaden_UK
dc.subjectstochastic modellingen_UK
dc.subjectepidemiological controlen_UK
dc.subjectdispersal patternsen_UK
dc.subjectEpidemiologyen_UK
dc.subjectCommunicable diseases Controlen_UK
dc.titleModelling control of epidemics spreading by long-range interactionsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[dkg09.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1098/rsif.2008.0468en_UK
dc.identifier.pmid19126536en_UK
dc.citation.jtitleJournal of the Royal Society Interfaceen_UK
dc.citation.issn1742-5662en_UK
dc.citation.volume6en_UK
dc.citation.issue39en_UK
dc.citation.spage941en_UK
dc.citation.epage950en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://rsif.royalsocietypublishing.org/en_UK
dc.author.emailadam.kleczkowski@strath.ac.uken_UK
dc.contributor.affiliationJagiellonian Universityen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationUniversity of Cambridgeen_UK
dc.identifier.isiWOS:000269197900010en_UK
dc.identifier.scopusid2-s2.0-69949085094en_UK
dc.identifier.wtid830170en_UK
dc.contributor.orcid0000-0003-1384-4352en_UK
dc.date.accepted2008-12-01en_UK
dcterms.dateAccepted2008-12-01en_UK
dc.date.filedepositdate2009-05-06en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDybiec, Bartlomiej|en_UK
local.rioxx.authorKleczkowski, Adam|0000-0003-1384-4352en_UK
local.rioxx.authorGilligan, Christopher A|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenamedkg09.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1742-5662en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
dkg09.pdfFulltext - Published Version279.11 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.