Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/11006
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.author | Villasana, Minaya | en_UK |
dc.contributor.author | Burke, Edmund | en_UK |
dc.date.accessioned | 2013-02-20T23:05:40Z | - |
dc.date.available | 2013-02-20T23:05:40Z | en_UK |
dc.date.issued | 2007-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/11006 | - |
dc.description.abstract | In this paper, we investigate the employment of evolutionary algorithms as a search mechanism in a decision support system for designing chemotherapy schedules. Chemotherapy involves using powerful anti-cancer drugs to help eliminate cancerous cells and cure the condition. It is given in cycles of treatment alternating with rest periods to allow the body to recover from toxic side-effects. The number and duration of these cycles would depend on many factors, and the oncologist would schedule a treatment for each patient's condition. The design of a chemotherapy schedule can be formulated as an optimal control problem; using an underlying mathematical model of tumour growth (that considers interactions with the immune system and multiple applications of a cycle-phase-specific drug), the objective is to find effective drug schedules that help eradicate the tumour while maintaining the patient health's above an acceptable level. A detailed study on the effects of different objective functions, in the quality and diversity of the solutions, was performed. A term that keeps at a minimum the tumour levels throughout the course of treatment was found to produce more regular treatments, at the expense of imposing a higher strain on the patient's health, and reducing the diversity of the solutions. Moreover, when the number of cycles was incorporated in the problem encoding, and a parsimony pressure added to the objective function, shorter treatments were obtained than those initially found by trial and error. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Ochoa G, Villasana M & Burke E (2007) An evolutionary approach to cancer chemotherapy scheduling. Genetic Programming and Evolvable Machines, 8 (4), pp. 301-318. https://doi.org/10.1007/s10710-007-9041-y | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | evolutionary algorithms | en_UK |
dc.subject | evolution strategies | en_UK |
dc.subject | objective function | en_UK |
dc.subject | optimal control | en_UK |
dc.subject | cancer chemotherapy | en_UK |
dc.subject | cancer model | en_UK |
dc.subject | cycle-phase-specific drugs | en_UK |
dc.title | An evolutionary approach to cancer chemotherapy scheduling | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 3000-01-01 | en_UK |
dc.rights.embargoreason | [Ochoa et al_GPEM_2007.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/s10710-007-9041-y | en_UK |
dc.citation.jtitle | Genetic Programming and Evolvable Machines | en_UK |
dc.citation.issn | 1573-7632 | en_UK |
dc.citation.issn | 1389-2576 | en_UK |
dc.citation.volume | 8 | en_UK |
dc.citation.issue | 4 | en_UK |
dc.citation.spage | 301 | en_UK |
dc.citation.epage | 318 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | gabriela.ochoa@cs.stir.ac.uk | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Universidad Simon Bolivar | en_UK |
dc.contributor.affiliation | Computing Science and Mathematics - Division | en_UK |
dc.identifier.isi | WOS:000250883300002 | en_UK |
dc.identifier.scopusid | 2-s2.0-36148967279 | en_UK |
dc.identifier.wtid | 753966 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dcterms.dateAccepted | 2007-12-31 | en_UK |
dc.date.filedepositdate | 2013-02-20 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.author | Villasana, Minaya| | en_UK |
local.rioxx.author | Burke, Edmund| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 3000-01-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Ochoa et al_GPEM_2007.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1389-2576 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Ochoa et al_GPEM_2007.pdf | Fulltext - Published Version | 505.09 kB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.