Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/11006
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorVillasana, Minayaen_UK
dc.contributor.authorBurke, Edmunden_UK
dc.date.accessioned2013-02-20T23:05:40Z-
dc.date.available2013-02-20T23:05:40Zen_UK
dc.date.issued2007-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/11006-
dc.description.abstractIn this paper, we investigate the employment of evolutionary algorithms as a search mechanism in a decision support system for designing chemotherapy schedules. Chemotherapy involves using powerful anti-cancer drugs to help eliminate cancerous cells and cure the condition. It is given in cycles of treatment alternating with rest periods to allow the body to recover from toxic side-effects. The number and duration of these cycles would depend on many factors, and the oncologist would schedule a treatment for each patient's condition. The design of a chemotherapy schedule can be formulated as an optimal control problem; using an underlying mathematical model of tumour growth (that considers interactions with the immune system and multiple applications of a cycle-phase-specific drug), the objective is to find effective drug schedules that help eradicate the tumour while maintaining the patient health's above an acceptable level. A detailed study on the effects of different objective functions, in the quality and diversity of the solutions, was performed. A term that keeps at a minimum the tumour levels throughout the course of treatment was found to produce more regular treatments, at the expense of imposing a higher strain on the patient's health, and reducing the diversity of the solutions. Moreover, when the number of cycles was incorporated in the problem encoding, and a parsimony pressure added to the objective function, shorter treatments were obtained than those initially found by trial and error.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationOchoa G, Villasana M & Burke E (2007) An evolutionary approach to cancer chemotherapy scheduling. Genetic Programming and Evolvable Machines, 8 (4), pp. 301-318. https://doi.org/10.1007/s10710-007-9041-yen_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectevolutionary algorithmsen_UK
dc.subjectevolution strategiesen_UK
dc.subjectobjective functionen_UK
dc.subjectoptimal controlen_UK
dc.subjectcancer chemotherapyen_UK
dc.subjectcancer modelen_UK
dc.subjectcycle-phase-specific drugsen_UK
dc.titleAn evolutionary approach to cancer chemotherapy schedulingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[Ochoa et al_GPEM_2007.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/s10710-007-9041-yen_UK
dc.citation.jtitleGenetic Programming and Evolvable Machinesen_UK
dc.citation.issn1573-7632en_UK
dc.citation.issn1389-2576en_UK
dc.citation.volume8en_UK
dc.citation.issue4en_UK
dc.citation.spage301en_UK
dc.citation.epage318en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailgabriela.ochoa@cs.stir.ac.uken_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversidad Simon Bolivaren_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:000250883300002en_UK
dc.identifier.scopusid2-s2.0-36148967279en_UK
dc.identifier.wtid753966en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dcterms.dateAccepted2007-12-31en_UK
dc.date.filedepositdate2013-02-20en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorVillasana, Minaya|en_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameOchoa et al_GPEM_2007.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1389-2576en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Ochoa et al_GPEM_2007.pdfFulltext - Published Version505.09 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.