Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/10278
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2012-12-18T14:58:12Z-
dc.date.available2012-12-18T14:58:12Z-
dc.date.issued2005-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/10278-
dc.description.abstractIn this paper we consider a general non-linear size-structured population dynamical model with size- and density-dependent fertility and mortality rates and with size-dependent growth rate. Based on M. Farkas (Appl. Math. Comput. 131 (1) (2002) 107-123) we are able to deduce a characteristic function for a stationary solution of the system in a similar way. Then we establish results about the stability (resp. instability) of the stationary solutions of the system.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationFarkas JZ (2005) Stability conditions for a non-linear size-structured model. Nonlinear Analysis: Real World Applications, 6 (5), pp. 962-969. https://doi.org/10.1016/j.nonrwa.2004.06.002en_UK
dc.rightsPublished in Nonlinear Analysis: Real World Applications by Elsevier; Elsevier believes that individual authors should be able to distribute their accepted author manuscripts for their personal voluntary needs and interests, e.g. posting to their websites or their institution’s repository, e-mailing to colleagues. The Elsevier Policy is as follows: Authors retain the right to use the accepted author manuscript for personal use, internal institutional use and for permitted scholarly posting provided that these are not for purposes of commercial use or systematic distribution. An "accepted author manuscript" is the author’s version of the manuscript of an article that has been accepted for publication and which may include any author-incorporated changes suggested through the processes of submission processing, peer review, and editor-author communications.en_UK
dc.subjectstructured population dynamicsen_UK
dc.subjectstabilityen_UK
dc.titleStability conditions for a non-linear size-structured modelen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.nonrwa.2004.06.002en_UK
dc.citation.jtitleNonlinear Analysis: Real World Applicationsen_UK
dc.citation.issn1468-1218en_UK
dc.citation.volume6en_UK
dc.citation.issue5en_UK
dc.citation.spage962en_UK
dc.citation.epage969en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000232254600009en_UK
dc.identifier.wtid754611en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dcterms.dateAccepted2005-12-31en_UK
dc.date.filedepositdate2012-12-17en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2012-12-17en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2012-12-17|en_UK
local.rioxx.filenamestruktmodell_jav.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1468-1218en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
struktmodell_jav.pdfFulltext - Accepted Version174.05 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.