Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34159
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Interpreting the volcanological processes of Kamchatka, based on multi-sensor satellite observations
Author(s): Flower, Verity J B
Kahn, Ralph A
Contact Email: verity.flower@stir.ac.uk
Keywords: Volcano
Plume height
Particle microphysical properties
Eruption dynamics
Plume evolution
Kamchatka
Remote sensing
Atmospheric dispersion dynamics
MISR
MODIS
OMI
Issue Date: Feb-2020
Date Deposited: 14-Mar-2022
Citation: Flower VJB & Kahn RA (2020) Interpreting the volcanological processes of Kamchatka, based on multi-sensor satellite observations. Remote Sensing of Environment, 237, Art. No.: 111585. https://doi.org/10.1016/j.rse.2019.111585
Abstract: Volcanoes are complex environmental systems that pose challenges to scientific study, due to their inherently hazardous nature and in many cases, remote locations. Satellite-based remote sensing provides a useful tool for assessing both ongoing activity and retrospective eruptions. This paper represents an initial application of a multi-sensor approach, in part to demonstrate its strengths and limitations in a single volcanic region that is fairly well monitored in situ. We utilize data from five NASA satellite-based instruments, having up to 18 years of global observations, to conduct in-depth investigations of eight volcanoes on the Kamchatka Peninsula (Russia) that were active between 2000 and 2018. From 169 eruptive plumes observed, we performed detailed plume-dynamics analysis in eighty-two cases for which sufficiently favorable observations were obtained. Plume heights from MISR and CALIOP, microphysical particle properties (e.g. fine ash, sulfates) from MISR, thermal anomalies generated by lava features from MODIS, and sulfur dioxide (SO2) concentrations from OMI and OMPS are all considered. Evidence of eruption evolution over months-to-years was identified at Shiveluch, Kliuchevskoi, Kizimen, Karymsky, Zhupanovsky, Koryaksky and Kambalny. In cases with extensive data coverage (Kliuchevskoi, Kizimen, Karymsky and Zhupanovsky), underlying subsurface dynamics is inferred, corroborated where possible with detailed ground-based data records. The 1.1 km resolution of the particle property retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) instrument capture downwind plume-particle evolution in many cases. Comparison of changes in aerosol optical depth (AOD), retrieved effective particle size (REPS) and retrieved effective particle absorption (REPA) map to six plume transport regimes, indicating varying degrees of downwind particle aggregation, deposition, and/or new particle formation. Distinct meteorological conditions are identified as likely driving these evolutionary processes, most notably the atmospheric static stability and wind shear at plume altitude. This approach can be applied to volcanic plumes globally, including those for which surface monitoring is limited or entirely absent.
DOI Link: 10.1016/j.rse.2019.111585
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
1-s2.0-S0034425719306054-main.pdfFulltext - Published Version8.2 MBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.