Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34044
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data
Author(s): Msusa, Anastazia Daniel
Jiang, Dalin
Matsushita, Bunkei
Keywords: secchi disk depth
water quality
water type classification
semianalytical models
MERIS
Issue Date: Feb-2022
Date Deposited: 9-Mar-2022
Citation: Msusa AD, Jiang D & Matsushita B (2022) A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data. Remote Sensing, 14 (4), Art. No.: 868. https://doi.org/10.3390/rs14040868
Abstract: Water transparency (or Secchi disk depth: ZSD) is a key parameter of water quality; thus, it is very important to routinely monitor. In this study, we made four efforts to improve a state-of-the-art ZSD estimation algorithm that was developed in 2019 on the basis of a new underwater visibility theory proposed in 2015. The four efforts were: (1) classifying all water into clear (Type I), moderately turbid (Type II), highly turbid (Type III), or extremely turbid (Type IV) water types; (2) selecting different reference wavelengths and corresponding semianalytical models for each water type; (3) employing an estimation model to represent reasonable shapes for particulate backscattering coefficients based on the water type classification; and (4) constraining likely wavelength range at which the minimum diffuse attenuation coefficient (Kd(λ)) will occur for each water type. The performance of the proposed ZSD estimation algorithm was compared to that of the original state-of-the-art algorithm using a simulated dataset (N = 91,287, ZSD values 0.01 to 44.68 m) and an in situ measured dataset (N = 305, ZSD values 0.3 to 16.4 m). The results showed a significant improvement with a reduced mean absolute percentage error (MAPE) from 116% to 65% for simulated data and from 32% to 27% for in situ data. Outliers in the previous algorithm were well addressed in the new algorithm. We further evaluated the developed ZSD estimation algorithm using medium resolution imaging spectrometer (MERIS) images acquired from Lake Kasumigaura, Japan. The results obtained from 19 matchups revealed that the estimated ZSD matched well with the in situ measured ZSD, with a MAPE of 15%. The developed ZSD estimation algorithm can probably be applied to different optical water types due to its semianalytical features.
DOI Link: 10.3390/rs14040868
Rights: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
remotesensing-14-00868-v2.pdfFulltext - Published Version3.45 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.