Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33960
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: The evolution of thermal performance in native and invasive populations of Mimulus guttatus
Author(s): Querns, Aleah
Wooliver, Rachel
Vallejo‐Marín, Mario
Sheth, Seema Nayan
Contact Email: mario.vallejo@stir.ac.uk
Keywords: Adaptive divergence
evolutionary ecology
invasion ecology
latitudinal gradient
niche conservatism
phenotypic cline
thermal performance curve
thermal tolerance
Issue Date: Apr-2022
Date Deposited: 24-Feb-2022
Citation: Querns A, Wooliver R, Vallejo‐Marín M & Sheth SN (2022) The evolution of thermal performance in native and invasive populations of Mimulus guttatus. Evolution Letters, 6 (2), pp. 136-148. https://doi.org/10.1002/evl3.275
Abstract: The rise of globalization has spread organisms beyond their natural range, allowing further opportunity for species to adapt to novel environments and potentially become invaders. Yet, the role of thermal niche evolution in promoting the success of invasive species remains poorly understood. Here, we use thermal performance curves (TPCs) to test hypotheses about thermal adaptation during the invasion process. First, we tested the hypothesis that if species largely conserve their thermal niche in the introduced range, invasive populations may not evolve distinct TPCs relative to native populations, against the alternative hypothesis that thermal niche and therefore TPC evolution has occurred in the invasive range. Second, we tested the hypothesis that clines of TPC parameters are shallower or absent in the invasive range, against the alternative hypothesis that with sufficient time, standing genetic variation, and temperature-mediated selection, invasive populations would re-establish clines found in the native range in response to temperature gradients. To test these hypotheses, we built TPCs for 18 native (United States) and 13 invasive (United Kingdom) populations of the yellow monkeyflower, Mimulus guttatus. We grew clones of multiple genotypes per population at six temperature regimes in growth chambers. We found that invasive populations have not evolved different thermal optima or performance breadths, providing evidence for evolutionary stasis of thermal performance between the native and invasive ranges after over 200 years post introduction. Thermal optimum increased with mean annual temperature in the native range, indicating some adaptive differentiation among native populations that was absent in the invasive range. Further, native and invasive populations did not exhibit adaptive clines in thermal performance breadth with latitude or temperature seasonality. These findings suggest that TPCs remained unaltered post invasion, and that invasion may proceed via broad thermal tolerance and establishment in already climatically suitable areas rather than rapid evolution upon introduction.
DOI Link: 10.1002/evl3.275
Rights: © 2022 The Authors. Evolution Letters published by Wiley Periodicals LLC on behalf of Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEB). This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Querns-etal-EL-2022.pdfFulltext - Published Version1.07 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.