Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3362
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Turnover of recently assimilated carbon in arctic bryophytes
Author(s): Street, Lorna E
Subke, Jens-Arne
Sommerkorn, Martin
Heinemeyer, Andreas
Williams, Mathew
Contact Email: jens-arne.subke@stir.ac.uk
Keywords: Mosses
NPP:GPP ratio
13C pulse-labelling
Carbon model
Carbon allocation
Photosynthesis
Autotrophic respiration
Mosses Arctic regions
Bryophytes
Climatic changes Arctic regions
Atmospheric carbon dioxide Environmental aspects
Issue Date: Oct-2011
Date Deposited: 16-Sep-2011
Citation: Street LE, Subke J, Sommerkorn M, Heinemeyer A & Williams M (2011) Turnover of recently assimilated carbon in arctic bryophytes. Oecologia, 167 (2), pp. 325-337. https://doi.org/10.1007/s00442-011-1988-y
Abstract: Carbon (C) allocation and turnover in arctic bryophytes is largely unknown, but their response to climatic change has potentially significant impacts on arctic ecosystem C budgets. Using a combination of pulse-chase experiments and a newly developed model of C turnover in bryophytes, we show significant differences in C turnover between two contrasting arctic moss species (Polytrichum piliferum and Sphagnum fuscum). 13C abundance in moss tissues (measured up to 1 year) and respired CO2 (traced over 5 days) were used to parameterise the bryophyte C model with four pools representing labile and structural C in photosynthetic and stem tissue. The model was optimised using an Ensemble Kalman Filter to ensure a focus on estimating the confidence intervals (CI) on model parameters and outputs. The ratio of aboveground NPP:GPP in Polytrichum piliferum was 23% (CI 9–35%), with an average turnover time of 1.7 days (CI 1.1–2.5 days). The aboveground NPP:GPP ratio in Sphagnum fuscum was 43% (CI 19–65%) with an average turnover time of 3.1 days (CI 1.6–6.1 days). These results are the first to show differences in C partitioning between arctic bryophyte species in situ and highlight the importance of modelling C dynamics of this group separately from vascular plants for a realistic representation of vegetation in arctic C models.
DOI Link: 10.1007/s00442-011-1988-y
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Street et al 2011_Oecologia.pdfFulltext - Published Version1.93 MBAdobe PDFUnder Embargo until 3000-01-01    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.