Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3308
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling
Authors: Subke, Jens-Arne
Voke, Naomi R
Leronni, Vincenzo
Garnett, Mark H
Ineson, Phil
Contact Email: jens-arne.subke@stir.ac.uk
Keywords: 14C
autotrophic respiration
below-ground interactions
ectomycorrhiza
forest girdling
heterotrophic respiration
litter decomposition
rhizosphere priming effect
soil CO2 efflux
Issue Date: Jan-2011
Publisher: Wiley-Blackwell / British Ecological Society
Citation: Subke J, Voke NR, Leronni V, Garnett MH & Ineson P (2011) Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling, Journal of Ecology, 99 (1), pp. 186-193.
Abstract: 1. Quantifying pathways and temporal dynamics of carbon (C) flux between plants and soil is critical to our understanding of the long-term fate of C stored in soils. The potential priming of old organic matter decomposition by fresh C input from plants means that the impact of environmental changes on the interactions between plant C allocation and soil C storage need to be better understood. We used forest girdling to investigate the partitioning of total soil CO(2) efflux (R(S)) into autotrophic (R(A)) and heterotrophic (R(H)) flux components and their interaction with litter decomposition. 2. The reduction in R(S) in girdled plots stabilized within two weeks at 65% of control plot values, indicating that R(S) is dominated by R(H), and that only a small pool of available non-structural C remains in roots in late summer to sustain rhizosphere metabolic processes. R(A) contributions declined from 35% late in the growing season to about 25% in winter. 3. Our results indicate that actual root respiration (R(R)) and respiration by ectyomycorrhizas and other rhizospheric organisms (R(M)) contribute c. 50% each to R(A) between September and early November. During winter, R(A) remained significantly greater than zero despite frequent sub-zero air temperatures, with R(M) being a dominant component of R(A) during this period. 4. Forest girdling significantly increased the age of C in soil-respired CO(2), consistent with the removal of contemporary C derived from R(A). Partitioning of soil CO(2) efflux on the basis of 14C results shows good agreement with the flux reduction observed between girdled and control plots. 5. Litter bag incubations indicate a promoting influence of an intact C supply to the rhizosphere on decomposition, indicating a positive rhizosphere priming effect. 6. Synthesis: Our results demonstrate significant contribution of mycorrhizas and other rhizosphere organisms to R(S), and suggest a direct link between an intact rhizosphere and litter decomposition dynamics. These results highlight the tight coupling between autotroph activity and soil decomposition processes in forest soils, and add to the growing body of evidence that plant and soil processes cannot be treated separately.
Type: Journal Article
URI: http://hdl.handle.net/1893/3308
DOI Link: http://dx.doi.org/10.1111/j.1365-2745.2010.01740.x
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.
Affiliation: Biological and Environmental Sciences
University of York
University of Bari, Italy
NERC Radiocarbon Facility (Environment)
University of York

Files in This Item:
File Description SizeFormat 
Subke et al 2011_JEcol.pdf271.81 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.