Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31998
Appears in Collections:Psychology Journal Articles
Peer Review Status: Refereed
Title: Surgical face masks impair human face matching performance for familiar and unfamiliar faces
Author(s): Carragher, Daniel J
Hancock, Peter J B
Contact Email: daniel.carragher@stir.ac.uk
Keywords: Face recognition
Identity verification
Familiarity
Deep neural network
Signal detection theory
Issue Date: Dec-2020
Date Deposited: 25-Nov-2020
Citation: Carragher DJ & Hancock PJB (2020) Surgical face masks impair human face matching performance for familiar and unfamiliar faces. Cognitive Research: Principles and Implications, 5 (1), Art. No.: 59. https://doi.org/10.1186/s41235-020-00258-x
Abstract: In response to the COVID-19 pandemic, many governments around the world now recommend, or require, that their citizens cover the lower half of their face in public. Consequently, many people now wear surgical face masks in public. We investigated whether surgical face masks affected the performance of human observers, and a state-of-the-art face recognition system, on tasks of perceptual face matching. Participants judged whether two simultaneously presented face photographs showed the same person or two different people. We superimposed images of surgical masks over the faces, creating three different mask conditions: control (no masks), mixed (one face wearing a mask), and masked (both faces wearing masks). We found that surgical face masks have a large detrimental effect on human face matching performance, and that the degree of impairment is the same regardless of whether one or both faces in each pair are masked. Surprisingly, this impairment is similar in size for both familiar and unfamiliar faces. When matching masked faces, human observers are biased to reject unfamiliar faces as “mismatches” and to accept familiar faces as “matches”. Finally, the face recognition system showed very high classification accuracy for control and masked stimuli, even though it had not been trained to recognise masked faces. However, accuracy fell markedly when one face was masked and the other was not. Our findings demonstrate that surgical face masks impair the ability of humans, and naïve face recognition systems, to perform perceptual face matching tasks. Identification decisions for masked faces should be treated with caution.
DOI Link: 10.1186/s41235-020-00258-x
Rights: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
s41235-020-00258-x.pdfFulltext - Published Version1.56 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.