Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31416
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Monitoring Agricultural Fields Using Sentinel-1 and Temperature Data in Peru: Case Study of Asparagus (Asparagus officinalis L.) |
Author(s): | Silva-Perez, Cristian Marino, Armando Cameron, Iain |
Keywords: | tropical agricultural monitoring canopy development analysis phenology retrieval Sentinel-1 multitemporal SAR multi-task machine learning |
Issue Date: | Jun-2020 |
Date Deposited: | 9-Jul-2020 |
Citation: | Silva-Perez C, Marino A & Cameron I (2020) Monitoring Agricultural Fields Using Sentinel-1 and Temperature Data in Peru: Case Study of Asparagus (Asparagus officinalis L.). Remote Sensing, 12 (12), Art. No.: 1993. https://doi.org/10.3390/rs12121993 |
Abstract: | This paper presents the analysis and a methodology for monitoring asparagus crops from remote sensing observations in a tropical region, where the local climatological conditions allow farmers to grow two production cycles per year. We used the freely available dual-polarisation GRD data provided by the Sentinel-1 satellite, temperature from a ground station and ground truth from January to August of 2019 to perform the analysis. We showed how particularly the VH polarisation can be used for monitoring the canopy formation, density and the growth rate, revealing connections with temperature. We also present a multi-output machine learning regression algorithm trained on a rich spatio-temporal dataset in which each output estimates the number of asparagus stems that are present in each of the pre-defined crop phenological stages. We tested several scenarios that evaluated the importance of each input data source and feature, with results that showed that the methodology was able to retrieve the number of asparagus stems in each crop stage when using information about starting date and temperature as predictors with coefficients of determination (R2) between 0.84 and 0.86 and root mean squared error (RMSE) between 2.9 and 2.7. For the multitemporal SAR scenario, results showed a maximum R2 of 0.87 when using up to 5 images as input and an RMSE that maintains approximately the same values as the number of images increased. This suggests that for the conditions evaluated in this paper, the use of multitemporal SAR data only improved mildly the retrieval when the season start date and accumulated temperature are used to complement the backscatter. |
DOI Link: | 10.3390/rs12121993 |
Rights: | Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing-12-01993.pdf | Fulltext - Published Version | 11.48 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.