Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29748
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Wet and dry tropical forests show opposite successional pathways in wood density but converge over time
Author(s): Poorter, Lourens
Rozendaal, Danaë M A
Bongers, Frans
de Almeida-Cortez, Jarcilene S
Almeyda Zambrano, Angélica María
Alvarez, Francisco S
Andrade, José Luís
Villa, Luis Felipe Arreola
Balvanera, Patricia
Becknell, Justin M
Bentos, Tony V
Bhaskar, Radika
Boukili, Vanessa
Brancalion, Pedro H S
Dent, Daisy H
Contact Email: d.h.dent@stir.ac.uk
Issue Date: Jun-2019
Date Deposited: 21-Jun-2019
Citation: Poorter L, Rozendaal DMA, Bongers F, de Almeida-Cortez JS, Almeyda Zambrano AM, Alvarez FS, Andrade JL, Villa LFA, Balvanera P, Becknell JM, Bentos TV, Bhaskar R, Boukili V, Brancalion PHS & Dent DH (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology & Evolution, 3, pp. 928-934. https://doi.org/10.1038/s41559-019-0882-6
Abstract: Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.
DOI Link: 10.1038/s41559-019-0882-6
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this version to be deposited in our repository: Poorter L, Rozendaal DMA, Bongers F, de Almeida-Cortez JS, Almeyda Zambrano AM, Alvarez FS, Andrade JL, Villa LFA, Balvanera P, Becknell JM, Bentos TV, Bhaskar R, Boukili V, Brancalion PHS & Dent DH (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology & Evolution, 3, pp. 928-934. https://doi.org/10.1038/s41559-019-0882-6
Notes: Additional co-authors: Eben N. Broadbent, Ricardo G. César, Jerome Chave, Robin L. Chazdon, Gabriel Dalla Colletta, Dylan Craven, Ben H. J. de Jong, Julie S. Denslow, Saara J. DeWalt, Elisa Díaz García, Juan Manuel Dupuy, Sandra M. Durán, Mário M. Espírito Santo, María C. Fandiño, Geraldo Wilson Fernandes, Bryan Finegan, Vanessa Granda Moser, Jefferson S. Hall, José Luis Hernández-Stefanoni, Catarina C. Jakovac, André B. Junqueira, Deborah Kennard, Edwin Lebrija-Trejos, Susan G. Letcher, Madelon Lohbeck, Omar R. Lopez, Erika Marín-Spiotta, Miguel Martínez-Ramos, Sebastião V. Martins, Paulo E. S. Massoca, Jorge A. Meave, Rita Mesquita, Francisco Mora, Vanessa de Souza Moreno, Sandra C. Müller, Rodrigo Muñoz, Robert Muscarella, Silvio Nolasco de Oliveira Neto, Yule R. F. Nunes, Susana Ochoa-Gaona, Horacio Paz, Marielos Peña-Claros, Daniel Piotto, Jorge Ruíz, Lucía Sanaphre-Villanueva, Arturo Sanchez-Azofeifa, Naomi B. Schwartz, Marc K. Steininger, William Wayt Thomas, Marisol Toledo, Maria Uriarte, Luis P. Utrera, Michiel van Breugel, Masha T. van der Sande, Hans van der Wal, Maria D. M. Veloso, Hans F. M. Vester, Ima C. G. Vieira, Pedro Manuel Villa, G. Bruce Williamson, S. Joseph Wright, Kátia J. Zanini, Jess K. Zimmerman & Mark Westoby

Files in This Item:
File Description SizeFormat 
Poorter et al Successional pathways WD NEE accepted version.pdfFulltext - Accepted Version880.08 kBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.